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Abstract: This article presents a framework and shows how neural networks can be employed in the
generation of human-machine interfaces (neurointerfaces) for real time object moving problems. In
a great number of applications, due to technical and economic factors, full automation is not
possible. In such cases, the human presence is essential and indeed, the system performance
becomes highly dependent on human skills. Accordingly, an interface that modifies the problem,
_ allowing unskilled human operators to perform the same task in a satisfactory way, becomes
extremely useful. The basic concepts and the scope necessary for the problem formulation are built
in a clear framework. The adaptive nonlinear inverse modeling approach is employed as the basic
methodology for specification and design of neurointerfaces. A successful application of a
neurointerface that helps an operator to back up a scaled model truck connected to a double-trailer

configuration is presented. Copyright 1999 IFAC.
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1. INTRODUTION

For many tasks, productivity, safety, and liability
-conditions require a considerable degree of skill from
human operators. In order to overcome lack of skill,
special human-machine neurointerfaces (Widrow, et
al., 1998a) may be adopted. The basic idea is to
change the operational space through a neural
network, allowing the human operator to interact
with the process through less-specialized commands.
Accordingly, the operator devotes his attention to
solve a less complex problem, directly at the task
level.. The objective is to improve the productivity
and safety levels of such tasks even in the case of
unskilled operators.

Although in the literature they are treated as different
systems, articulated vehicles and manipulator robots
are both articulated mechanical chains. Providing
them with autonomous or semi-autonomous motion
leads to similar direct and inverse geometric control
problems. There are also other systems, like
construction cranes, that can be treated similarly.
These systems may me called object moving

systems. The dynamics of the task goals and the
dynamics of the object moving system establish, in
principle, the complexity of the global control
problem: the relationship between the controlled
space, configuration space, and the operational space.
In this work, functions and their inverses are to be
implemented by neural networks in a strategy to
provide neurointerfaces for moving object problems.
This paper aims at providing a framework for the
problem and at showing how neural networks can be
employed in the generation of human-machine
interfaces. Due to the complexity of such problems,
neural networks are becoming a natural choice. Their
abilities to reproduce highly nonlinear behavior are
described extensively in the literature.

This article is divided in 6 (six) sections. Section 2
builds a framework for the problem. Section 3
presents the basic ideas concerning neurointerfaces.
In Section 4, the adaptive inverse modeling approach,
a framework utilized for neurointerface design is
described. A successful neurointerface application,
helping a human driver to back up a scaled model
truck connected to a double-trailer configuration, is



presented in section 5. Section 6 presents
conclusions.

2. OBJECT MOVING PROBLEMS

To establish and define a class of object moving
problems in the physical world, one must first
introduce the concepts of operational space,
configuration space, and controlled space. Roughly
speaking, the operational space is the one where the
task goals are defined. The configuration =space
represents the elementary- independent degrees of
freedom (linear and/or rotational) in the object
moving system. Because they are mechanical systems
in a state space representation, the state variables can
be chosen as the configuration variables plus their
derivatives. Finally, the controlled space is a
subspace of the configuration space, where the
variables are effectively powered by another system
(controller and drivers). In this section, these 3
spaces, and the concepts of direct and inverse models
for the functions linking them, will be discussed.

The kind of system of interest here is called an object
moving system. As examples of these systems, one
can cite construction cranes (Lamego and Rey, 1995),
artificial arms (Ferreira, 1987), human arms, mobile
robots, fork-lift-trucks (Espinosa, et al., 1998), truck
and trailers (DeSantis, 1994 and Widrow, et
al.,1998a), etc. Each one of these systems has its own
organization and its own controlled space, or a
different space where its elementary movements are
generated to compose a compatible movement with
those in the operational space.

The object moving system of specific interest to this
paper is the truck-trailer-trailer configuration shown
in figure 1. The angle of the front wheels is (6;), and
the angles of the 2 joints are truck-trailer (6,), and
trailer-trailer (6;). Only the first configuration
variable (6;) is driven by an external source. The
configuration variables in the active joints, are called
controlled variables.

Obstacles

Figure 1: Truck-trailer System

Regarding the system of figure 1, the constraints are
the jacknife configurations for 6, and 0; the limit for
0,, and the location of nearby external obstacles. The
situation variables are defined for each different task
goal. If the goal is going forward the task variable is
the controlled variable 6;. In this case the function
between controlled and operational spaces is the
identity function. If the goal is to back-up, the task
variable is the angle 6". This is the angle between the
desired direction of travel and the axis of the second
trailer. In this case there is a nonlinear function
linking variables 6 and 6;.

3. NEUROINTERFACES

For a human working with a semi-autonomous

system, it is essential to perform all actions in the

task space, in accord with the scheme illustrated in
figure 2. Driving forward is a simple task because the
person performs directly in the task space. To drive
backwards, a coordination problem must be solved.
To avoid having the human solving a coordination
problem, we must provide an interface as shown in
figure 2. Figure 2 shows the relationships among the
elements defined previously for a semiautonomous
object moving system.

To implement the interface of figure 2 we will use
nonlinear inverse control techniques (Widrow and
Walach, 1996), (Widrow, et al., 1998b), as a
framework for the synthesis of neural network based
solutions - neurointerfaces. Aside from robots, other
object moving systems, construction cranes for
instance, are controllable with neurointerfaces
(Lamego and Rey, 1995). At the end of this paper we
will present a successful application, backing up a
truck having the configuration of figure 1.
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Figure 2: Semiautonomous Object Moving System.
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For a system without an interface, an operator

develops from his experience a setof causal rules that
map standard behavior into control actions (cognitive
model for the coordination), and this is exactly what
we will try to reproduce with a neurointerface. While
cases might exist in which the neurointerface
provides just an approximation of those actions taken
by an expert operator, the change of operational
space made by the neurointerface, although it may
not solve the problem completely, allows the human
operator to interact with the system through less-
specialized actions. Sometimes the operator can not
observe directly the main variables of interest during
operation. Instead, the operator controls the system
by reasoning about a set of related variables that can
be directly observed. The relationship between these
observable variables and the main variables of
interest are often not known precisely. A
neurointerface applied to such a system may not be
able to completely invert the system model due to the
lack of information, and consequently may not solve
the interface problem completely. Nevertheless, the
productivity, safety and liability conditions may be
far improved with its utilization.

There are cases, however, where the neurointerface
. can be fully specified. The main variables of interest
are either directly available or may be expressed as
some function of the observed variables. In addition,
the mapping between standard behavior and control
actions can also be achieved by using knowledge of
the functional relationship between the main
variables of interest. This is the case, for instance, in
backing a truck and trailer to a loading platform.
Although, this constitutes a difficult task for all but
the most skilled truck drivers, a neurointerface can be
fully specified and the trailer truck operation exercise
reduced to a much less complex problem. In this
case, the neurointerface may be considered as a black
box that takes commands from the driver (desired
direction of the back part of the trailler) and provides
the necessary actions (steer the wheels) in order to
achieve such a goal. The truck speed and the angle
between cab and trailer are sufficient information to
obtain precise inverse modeling of the system. We
should note that the driver was not eliminated in this
problem. Nguyen and Widrow, (1990), proposed a
neural network that provided full automation in
backing a trailer truck to a loading dock and indeed,
eliminating the presence of the driver. In the present
work, the human action is essential. In fact, the driver
is concerned with providing the desired spatial
trajectory, free of obstacles and normally the shortest
one. The truck-backing-up can be approximated by a
kinematics inverse modeling problem. The dynamic
effects that may occur during the operation are not
significant, thus the coordination problem is simpler
than a problem containing both kinematics and
dynamic effects.

4. NEUROINTERFACES DESIGN - ADAPTIVE
NONLINEAR INVERSE APPROACH.

Adaptive nonlinear inverse modeling has evolved
from a similar approach for linear systems. Basically,
the objective is to cancel the plant nonlinear dynamic
effects by using a nonlinear device that can reproduce
an approximated inverse of the plant. The term
“approximated” is employed to emphasize that, in
general, a nonlinear system does not possess an
inverse. However, despite some pathological cases
that might eventually exist, the methods of adaptive
inverse modeling can often be applied to obtain
acceptable inverse approximations of nonlinear
systems. The specification of a neurointerface is
based on the idea that a nonlinear plant can be
approximated by a neural network model, here

represented by the function f:RP*** - R, of the
form

Y1 = f(ykayk—l"",yk—p,uk9uk—1:"'9uk_q,wM)(1)
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The variables u and y are, respectively, the plant
input and plant output and w,, is the neural network

weight vector. The first step in a neurointerface
design is to obtain a neural network model for the
plant as defined in equation (1) and then, use it to
obtain a neural approximation for the plant inverse
(neurointerface). Widrow , et al. (1998a), describes
the nonlinear system identification procedure. The
neural network uses as its inputs the current and
previous values of the plant input and also previous
values of its output. Its output represents an’
approximation of the plant output. The neural model
can be trained with a set of input-output data either
acquired from the real plant or obtained from the
plant mathematical model (if available).

The  Algorithm  backpropagation-through-time
(Werbos, 1990) may be used to adapt the weights of
the neural network model. If the input of the neural
network model does not include any connection to
plant output (a feedforward neural network), the
conventional backpropagation algorithm (Rumelhart,
et al., 1986), may be employed.

Figure 3 illustrates the training of the neurointerface
to compute an approximate inverse for the obtained

_plant neural model. The neurointerface computes a

function g : RP*9*! — R, of the form
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Figure 3: Adapting Neurointerfaces

Variables r and u are, respectively, the neurointerface
input and output, and w, is the neurointerface

weight vector. During training, the signal r can be
random noise with suitable choice of spectrum.

Because the plant is nonlinear, the neurointerface is
trained in the configuration in which it will normally
work. In the cascade of nerointerface and plant, the
neurointerface comes first. Consequently, to compute
the mean square error gradient with respect to the
neurointerface weights, information concerning the
plant must be available. This is the reason why the
plant is replaced by its neural realization during the
neurointerface adaptation procedure. The change in
the neurointerface weights at each training step is in
the negative direction of the gradient of the system

mean square error E( ekz ). To find the gradient, the

chain-rule expansion for ordered  derivatives is
employed
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Each of the terms in equations (4) and (5) is either a
Jacobian matrix, which may be calculated using the
dual-subroutine (Werbos, 1992) of the
backpropagation algorithm, or is a previously

oty a*y,
calculated value of %w or ° Y% . To be more
c C .

specific, the first term in equation (5) is the partial
derivative of the neurointerface’s output with respect
to its weights. This term is one of the Jacobian
matrices of the neurointerface and may be éalcu]ated
with the dual subroutine of the backpropagation
algorithm. The second part of equation (5) is a
summation. The first term of the summation is the
partial derivative of the neurointerface’s current
output with respect to a previous output. However,
since the neurointerface is externally recurrent, this
previous output is also a current input. Therefore the

- first term of the summation is really just a partial

derivative of the output of the neurointerface with
respect to one of its-inputs. By definition, this is a
sub-matrix of the Jacobian matrix for the network,
and may be computed using the dual-subroutine of
the backpropagation algorithm. The second term of
the summation in equation (5) is the ordered partial
derivative of a previous output with respect to the
weights of the neurointerface. This term has already
been computed in a previous evaluation of equation
(5), and need not be re-computed. A similar analysis
may be performed to determine all of the terms
required evaluating equation (4). After calculating
these terms, the weights of the neurointerface may be
adapted using the weight-update equation:

+
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The neurointerface, once it is trained, is designed to
operate in real time without any further adaptation.
This implies that its adaptation procedure can be
performed offline. The neurointerface does not cancel
disturbances that may occur in the plant. It just
changes the operational space through a recurrent
neural network. Nonetheless, there are situations
where the plant inversion supplied by the
neurointerface is not adequate for providing reliable
operating conditions. Disturbing effects may occur
during the plant operation and may lead it to risky
operating regions. To overcome the disturbing effects
and provide more reliable operating conditions to the
operator, adaptive linear control schemes may be
adopted as shown by Widrow and Walach, 1996, or
Widrow, et al., 1998b. ‘ '

5. EXPERIMENTAL RESULTS

This section briefly presents experimental results of
a neurointerface that reduces the difficulty of trailer
truck backing operations. We will consider a real
scaled truck with two trailers, as presented by
Widrow, et al., 1998a, with the same configuration
shown in figure 1. For this application we will



consider the last configuration angle 6; as the variable
to be controlled. The objective of steering while
backing is to control 65, which will determine the
radius of curvature of the backing trajectory.

The neurointerface may be considered as a black box
that takes commands from the driver, in this case the
desired direction of the back part of the last trailer,
and provides the necessary control actions (steer the
front wheels to ultimately control variable 03). In this
implementation, the neurointerface works in closed
loop. The adaptive linear control topology presented
by Widrow, et al., 1998 is employed here. For this
.application, the neurointerface has as its inputs, the
truck speed, the angle 6,, the desired value of the
angle between the first trailer and the second one (03)
and the previous value of the neurointerface's output
(the front wheel steering angle, 6;).

The neurointerface was designed following the steps
described in section 3. Acquired data from the truck
prototype was used to obtain the neural model. The
obtained neural model was used for the training of
the neurointerface.

An adaptive disturbance canceller was used (Widrow
and Walach, 1996) to mitigate the effects of plant
disturbance.

The offline process for adaptation of the disturbance
canceler is started at every 500 samples, sampling
period of 30 ms. The data acquired in this interval (15
sec.) are used as the training set. Experimental results
are shown in figure 5. They correspond to sequences
of data acquired from the model truck and trailers
- moving backwards. From this figure, one can see that
the angle 0; was able to track the commanded angle.
It was possible to precisely steer the truck and two
trailers traveling backwards at quite high speed.
Direct human control of the truck and two trailers
going backwards without the neurointerface was
impossible.
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Figure 5: Experimental results.

6. CONCLUSIONS AND FURTHER WORK

This article presents a new framework for object
moving problems and a new approach for generation -
of human-machine interfaces through neural
networks (neurointerfaces). The adaptive nonlinear
inverse modeling approach is employed as the basic
methodology for specification and design of
neurointerfaces. The neurointerface is able to cancel
most of the nonlinear effect the plant may have and,
indeed, it can be used in combination with adaptive
linear control schemes for the control of nonlinear
plants. A successful application, a neurointerface that
helps an operator to back up a scaled model truck
connected to a double-trailer configuration, is also
presented. The results lead one to conclude that full
utilization of npeurointerfaces for real time
applications will be very useful. With further work,
the degree of autonomy of the truck will be improved
adding sensors to the system. For the time being the
operator must verify all the constraints .due to
obstacles. This methodology will be extended for
more complex systems, like robots working with real
tasks.
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