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Gaussian Feedback Capacity 
THOMAS M. COVER, FELLOW, IEEE. AND SANDEEP POMBRA 

Abstracl-The capacity of time-varying additive Gaussian noise cban- 
nels with feedback is characterized. Toward this end, an asymptotic 
equipartition theorem for nonstationary Gaussian processes is proved. 
Then, with the aid of certain matrix inequalities, it is proved that the 
feedback capacity C,, in bits per transmission and the nonfeedback 
capacity C satisfy C 5 CFB < 2C (a result obtained by Pinsker and Ebert) 
andC<C,,<C t$. 

I. INTRODUCTION AND SUMMARY 

w 

E W ISH to characterize the capacity of time-vary- 
ing additive Gaussian noise channels with feedback. 

At the same time, we wish to show that the feedback 
capacity C,, and the nonfeedback capacity C satisfy the 
inequalities C ra I 2C and C,, < C + $ in bits per trans- 
mission. The C,, < 2C result is due to Pinsker [l] and 
Ebert [2]. 

The channel Y, = X, + Zi, i = 1,2; * . , has additive 
Gaussian noise Z,, Z,, Z,, . . . where Z” = (Z,, . . . , Z,) - 
N,(pL,, K,). The output is given by Y” = X” + Z”. For 
block length n we shall specify a (2nR, n) code with 
codewords x”(W, YE-i) = (xr(W),x,(W, Y’), 
. . . , x,(W, Yfl-‘)), W  E {1,2;. .,2nR}, and decoding 

function g,: R” + { 1,2,. . . , 2”R }. The probability of error 
Pen) is defined by e 

Pi’)=& 5 Pr{g,(Y”)#ilx”=x”(i,Y”-l)} 
i=l 

=Pr{g,(Y”)fW} 

where W  is uniformly distributed over { 1,2,. . *, 2”R } 
independent of Z”. The object is to communicate 

(1) 
and 
the 

index W  to the receiver at high rates R with low probabil- 
ity of error P,‘“). We  begin by using Fano’s inequality to 
show that, for any sequence of (2nR, n) codes with P,‘“) --) 0, 

nR I I( W ; Y’) + nc, 

where en + 0 and W  is uniformly distributed over 
{1,2;. *,2nR}. 

It would now be a mistake to use the data processing 
inequality to replace I( W , Y”) by the upper bound 
I( X”; Y”). Although these quantities are suitably close for 
channels without feedback, I( X”; Yn) blows up (e.g., when 
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X” = (Xl, X2,. . . , X,) = (0, Z,, Z,, . . . , Z,_,)) when feed- 
back is allowed. Instead we prove directly the known result 

I(W ;Y”)=h(Y”)-h(Z”). (2) 
This we wish to maximize. We  cannot affect the noise 
entropy 

h(Z”) = ~ln(Zse)‘]K!“)( (3) 

where ]Kl denotes the determinant of K, so we are left 
with maximizing h(Y”), both with and without feedback. 

From the entropy maximizing property of the Gaussian 
distribution we have 

h(Y”) 5 ~ln(2ne)n]Kl;~zl (4) 

where 

K$&=E(X+Z)(X+Z)’ 

= K, + K, + K,, + K,. (5) 

(We shall often suppress the block length n and associated 
matrix size in the discussion.) We  are thus led to believe 
that the capacity of the channel is 

1  1 
lim -I( W ; Y’) = lim max z log 

n+~ n rl’cc 
$ (6) 

where the determinant ] KpJ,“!,I is maximized under the 
power constraint 

Ei $xf(W,Z”)=~tr(K~))<P. (7) 
1-l 

There are a few problems with this formulation. First, 
max(l/2n)log(]K~~,“!,(/(K~)]) may not have a limit as 
n + co, because of the time-varying nature of the noise 
{ Zj }. (We have not assumed stationarity.) 
by generalizing the notion of capacity to 

where this quantity can be thought of as the capacity in 
bits per transmission if the channel is to be used for the 
time block {1,2;. ., n  }. The relationship of X to Z  in the 
maximization depends on whether or not we have feed- 
back. 

We  handle this 

(8) 

It is now time to distinguish the characterization of 
capacity in the feedback cases from that in nonfeedback 
cases. Clearly, since the noise Z” and the signal index W  
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are independent, it follows that X”(W) is independent of 
Z” if no feedback is allowed, and thus 

K& = Kp) + Kg). (9) 
Feedback adds cross terms K, and K,,. We now have 
the following informal time-varying channel capacity state- 
ments for block length n. 

1) The capacity C,,,, in bits per transmission of the 
time-varying Gaussian channel with feedback is 

C n,FB= (10) 

where the maximization is taken over all X” of the form 
i-l 

xi= 1 bjjzj+y, i=1,2;..,n (11) 
j=l 

and V” is independent of Z”. To verify that the maxirniza- 
tion over (11) involves no loss of generality, note that the 
distribution on X” + Z” achieving (4) is Gaussian. Since 
Z” is also Gaussian, it can be verified that a jointly 
Gaussian distribution on ( Xn, Z”, X” + Zn) achieves the 
maximization in (4) and consequently in (10). Since Z” = 
Y” - X”, the most general jointly normal causal depen- 
dence of X” on Y” is however of the form (ll), where V” 
plays the role of the innovations process. Recasting (lo), 
(11) by using X = BZ + V and Y = X + Z, we can write 

1 
C 

I(B+I)K,(B+I)‘+K,I 
n,FB = max G log 

I&I (12) 

where the maximum is taken over all nonnegative definite 
K, and strictly lower triangular B such that 

tr(BK,B’+ K,) I nP. (13) 
(Without feedback, B is necessarily 0.) 

2) The capacity C, of the time-varying Gaussian chan- 
nel without feedback is given by 

c, = 
lK9) + Kg,“)1 

max 
ftr(Kp))<P 

&log lKg)l ’ (14) 

This reduces to waterfilling on the eigenvalues {X(r)} of 
K$‘). Thus 

cn=& ,$ log 1+ 
1-l 

[ ‘y)+ ) (15) 

where ( y)’ = max { y, 0} and X is chosen so that 

f (X-A,)+=nP. (16) 
i=l 

We have upper-bounded the achievable feedback rates 
bY cn,FB. We subsequently prove the achievability of C, rB 
by proving the existence of (2n(Cn~~~-‘), n) codes with P>‘) 
-+ 0, for any c > 0. To do this we use a random coding 
argument. This requires the use of the asymptotic equipar- 
tition property (AEP). Unfortunately, the AEP usually 
only holds for ergodic stochastic processes, and ergodicity 

is too much to require of { Z,}y=,, and pointless to request 
of { yI};xIi, because we would then be restricting the maxi- 
mization with a resulting loss of generality. Surprisingly, 
the AEP holds for arbitrary (nonergodic) Gaussian pro- 
cesses as proved in Section V. (See also Pinsker [9].) Thus 
we can indeed prove that rates less than C, bits per 
transmission can be achieved for n transmissions over this 
channel. We state the following theorem. 

Theorem I: Let { Z, }T=i be an arbitrary Gaussian 
stochastic process such that Z” - N(pL,, Kg)). Then there 
exists a sequence of (2”(Cn,~~-‘), n) feedback codes with 
P,‘“) + 0, as n + 00, for c > 0. Conversely, for E > 0, any 
sequence of (2”ccn,FB+c), n) codes has P,‘“) bounded away 
from zero for all n. The same statement holds in the 
special case without feedback upon substitution of C,, for 
C n,FB’ 

We prove this theorem in Section VI. 
In an earlier work, Butman [3] showed that feedback 

increases capacity for the first-order autoregressive chan- 
nel. Tiernan and Schalkwijk [4] provided upper bounds to 
the capacity of band-limited first-order Gaussian autore- 
gressive channels with feedback under an average energy 
constraint. Their development is based on “path energy 
increments” and does not require linear processing. In a 
subsequent paper [5], they analyzed the optimum linear 
system for an autoregressive forward channel with feed- 
back. Finally, Butman [6] achieved tighter bounds on the 
capacity of general m  th-order Gaussian autoregressive 
channels with linear feedback. 

II. NECESSARY MATRIX INEQUALITIES 

Let ]A] denote the determinant of A. To upper-bound 
IK:x+zl in the capacity formulas we need a number of 
matrix inequalities. It should come as a pleasant surprise 
that they all have information theoretic proofs. First we 
require the following. 

Lemma 1: If A and B are nonnegative definite symmet- 
ric matrices, then 

IA + B( 2 IAl. (17) 

Proof: Let X - N,(O, A), Y - iV,(O, B) be independent 
Gaussian n-vectors. Then 

~ln(2~e)nlA+B[=h(X+Y)kh(X+YIY)=h(X) 

= i In(2ae)“IAl. (18) 

Lemma 2: 

K X+Z+KX-Z =2K,+2K,. (19) 

Proof: We have 
K X+Z=KXX+KXZ+KZX+KZZ 
K x-z = Kxx - Kxz - Kzx + Kzz. (20) 

Summing the two equations yields the result. 
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The next inequality, which we get by combining Lem- 
mas 1 and 2, is crucial in proving C,, < C + $. 

Lemma 3: 

IKx+~~<~2Kx+2Kz~=2”~Kx+ K,I. (21) 
Finally, to prove C FB I 2C, we need the (known) in- 

equality given in Lemma 4 (see [7]). The proof is new. A 
number of determinant inequalities are developed in [12]. 

Lemma 4: For A, B nonnegative definite matrices and 
O<Xrl, 

IXA + (1- h) BI 2 IAI”IBI1-? (22) 
Proof: Let X - N,(O, A), and Y - N,(O, B). Let 2, be 

the mixture random vector 

z,= “y3 
( , 

if8=1 
if f3 = 2, 

and let 

(j= ;’ 
L 

with probability X 
with probability 1  - X. 

Let X, Y, 8 be independent. Then 

K,=XA+(l-h)B. 

We  observe that 

iln(Zne)“jAA+(l-X)BI>h(ZO) 

2 Gw) 
=Xh(X)+(l-X)h(Y) 

= ~ln(2ae)“/A~“/B~‘~“, 

which proves the result. The first inequality follows 

r h(s?) 

Here (a) is the chain rule, (b) is conditioning h(A(B) 2 
h (Al B, C), (c) follows from the conditional determinism of 
Xi and the invariance of differential entropy under transla- 
tion, (d) follows from the causal relationship of X” and 
Z”, and (e) is the reverse chain rule. 

Finally, suppose X” and Z” are causally related and the 
associated covariance matrices for X and X - Z  are K, 
and K,_,. There obviously exists a multivariate normal 
pair of (causally related) random vectors X’, Zn with the 
same covariance structure. Thus from (28), we have 

Although we shail be proving that both C,,,, and C,, are 

(25) 
achievable communication rates, we do not need to show 
achievability at this stage. 

from 
the entropy maximizing property of the Gaussian distribu- 
tion under a covariance constraint. 

Previous work by Gallager [8] guarantees that C = 
lim C exists if {Z,} is a  stationary Gaussian stochastic n--)00 n 
process and, furthermore, that C is the capacity for such 
stationary channels. Thus proving C,,,, I C, + i for all n  
guarantees that 

(23) = f ln(2ae)“]K,(, 

thus proving (27). 

III. FEEDBACK INCREASES CAPACITY BY AT MOST 
HALF A BIT 

We now show C,, I C + i. Let 

(24) C n,FB (29) 
where the maximum is taken under the constraints in (12), 
(13). Let 

c, = 
IKjyn) + K$‘“‘J 

max Log 
tr(Kp’) 5 nP 2n IKp’I ’ (30) 

Definition: We  say that the random vector X” is causally 
related to Z” if f(x”, z”> = f(z”)rI~=If(xilxi-‘, zip’). 
Note that feedback codes necessarily yield causally related 
(X”, zn>. 

Lemma 5: If X” and Z” are causally related, then 

h(X- Z) 2 h(Z) 

and 

IKX-.I 2  IKZI. 
Proof: We  have 

h(X-Z)f t/(X,-z,Ix”-z”) 
i=l 

(b) 
2 xh( Xi- ZJX’-‘, Zi-‘, X,) 

2  ~h(Z;lXi-l, Z’-‘, Xi) 

z zh(Z;lZ’-‘) 

oh(Z). 

CFBIlimn,,C,,,,I lim C,,+i=C+k. (31) n+m 
We  are now ready to prove that feedback adds to the 

capacity at most i a  bit per transmission. 

(26) Theorem 2: C,,,, I C,, + :. 

Proof: Let the n x n covariance matrix Kx+z achieve 
(27) feedback capacity C,,,, in (29). Then 

ncn,FB 

1 
5 z log 

1=x + 2KzI 
Fzl 

= ilog 2”lKx + KZI 
IKZI 

= ilog lKx+Kzl n  
Ili=,l +y 

(28) 

1 
In Cn+z . ( i (32) 
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Here, the first inequality, which relates feedback to non- If lim, +co h, = h exists, we say {X,)7=,, has entropy rate 
feedback, follows from Lemma 3. Thus C,,,, < C,, + $ for h. In particular, {Xi} stationary implies the existence of an 
all n. entropy rate. Since in this discussion, X1, X,, * 1 . , X,, are 

jointly normal, we know 

IV. FEEDBACK AT MOST DOUBLES CAPACITY X- N(P,~ K,) (39) 

We now prove the celebrated result C,, I 2C of Pinsker 
and can calculate directly 

[l] and Ebert [2]. h,= &ln(2ne)nlKnl. (40) 
Theorem 3: C,,,, I 2C,,. Finally, recall the AEP as proved in. full generality by 

Proof: It is enough to show that Barron [ll]. 

1 1 lKx+zl 1 
---log IKzl ryp 

IKX + Kzl Theorem 4: If {X,} is stationary and ergodic with en- 

2 2n IKZI ’ 
(33) tropy rate h, then 

for it then follows, by maximizing each side in turn, that -iInf(Xl;.e,X,) +h (41) 

f cn,FB s cn. (34) 

We have 

IKx + K,I (a) 1 
= nlog 

I$Kx+z + sx-.I 
Ili=zl IKZI 

(b) 1 
2 Glog 

lKx+zl”21Kx-z11’2 

IKZI 

Cc) 1 
2 Glog 

IKx+z11’21~z11’2 

IKZI 

(35) 

and the result is proved. Here (a) follows from Lemma 2, 
(b) from the inequality in Lemma 4 and (c) from Lemma 5 
through the use of causality. 

V. AEP FOR NONERGODIC GAUSSIAN PROCESSES 

Gaussian stochastic processes apparently are special in 
the sense that they have the asymptotic equipartition prop- 
erty without the assumption of ergodicity or stationarity. 
We show, for {Xi} jointly Gaussian, 

-~~ogf(x,;x~,...,x,,)- 
h(X,,--7 X,> 

+ 0, (36) n 

with probability one. A similar result, without the distribu- 
tion-free rate of convergence implicit in (45) and (47), is 
proved in Pinsker [9]. 

Let Xi, X,, . . . be a time discrete Gaussian stochas- 
tic process. Let K, denote the covariance matrix of 
(XI, X2,.. ., X,). Let 

h,= 
h(X,, X2,-.., Xn> 

(37) n 

denote the (differential) entropy of (Xi, X2, * . . , X,) per 
unit time. Recall that if X - f(X), the differential entropy 
is given (in nats) by 

h(X,,X,,-, X,)=h(f)=-/f(x)lnf(x)dx. (38) 

with probability one. 

In a similar way to the AEP, we would like to show 

-iInf(Xl;..,Xn) -+h (42) 

for arbitrary Gaussian processes. Without any further as- 
sumptions, h need not exist, so we wish to show the 
stronger result 

--ilnf(Xl;..,Xn)-h,+O. (43) 

with probability one. Clearly, (43) implies (41) when lim h, 
exists. 

Note that Gaussian processes need not be ergodic. For 
example, consider Z,,, Z,, Z,, . . . i.i.d. - N(0, 1). Let X, = 
Zo+Zi, i=1,2;... Then {Xi} is stationary but not 
ergodic. In particular (l/n)C;==,X, + Z,, a.e., which is a 
random variable. However, the AEP still holds. This is not 
the case for other apparently similar non-Gaussian con- 
structions. For example, let Zi - Bern ( pl) with probabil- 
ity X and Z, - Bern (p2) with probability 1- X. Then 
-(l/n)logp(Z,; . .) Z,) does not converge to the en- 
tropy rate H. 

Theorem 5: If {Xi} . is an arbitrary Gaussian stochastic 
process, then 

with probability one. 

Proof: If (K,I = 0, the result is trivially true since 
h, = - cc, and f is singular. Without loss of generality, let 
p = 0. We now assume IK,( > 0, for all n. Then 

-L1nf(Xl,Xz,...,X,,) 
n 

1 
= 

(2~) ‘I21 K,J1/’ 
e-X'K,J1X/2 

n 
1 X’KplX 

=iln2r+klnlKml+;e 

=h ~~+~‘T’x 
“2n 2 

where the last equality follows from (40). 

(45) 
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However, it is well-known (Kendall and Stuart [lo]) 
that, for ]1y,,] > 0, X’K;lX has a chi-squared distribution 
with n degrees of freedom. That is, the distribution of 
X’K;‘X is the same as the distribution of C:=iZ?, Z, 
i.i.d. - N(O,l). 

For Q’=,Z,’ chi-squared with n degrees of freedom, the 
Chernoff bound yields 

pr 1 i zi’> (I+ c) 5  e-w2)(t--ln(l+t-))~ 
1 i 

(46) 
n I=1 

Thus 

Pr 
II 

-Alnf(X1,Xz,.. 
n  

.,X,)-h, >E 
I 1  

< e-n(~-(1/2)ln(l+2Q) (47) 

a bound that does not depend on K,. 
Finally, by (47) and the Borel-Cantelli lemma, 

with probability one. 

VI. CONVERSE FOR THEOREM 1 

We  now show that (2”(Cn.~~+‘), n) feedback codes have 
probability of error P,‘“) bounded away from zero. The 
same proof works in the special case without feedback 
upon substitution of C, for C,,,,. 

Consider a sequence of (2nR, n) feedback codes 
(x;(W, y’-‘), g(e)), w E {1,2; f *,2nR}, Y’ = 
(Y,,Y,;..,Y), g: R”+{1,2,...,2”R}.Let hi=P{g(Y”) 
# W(W= i}, and P, cn) = (1/2”R)C;“TA,. The joint distri- 
bution of (W, X, Y) is given by 

W- unif {1,2,.**,2”R} 

x= (X1(W),X*(W,Y1),-~,X,(W,Yn-l)) 

Y=X-tZ 
Z  - N(O, K,) 
W  and Z  independent. (49) 

We  wish to show that a sequence of (2*Rn, n) codes with 
P,‘“) + 0 must have nR, < h(Y”)- h(Z”)+ HE, I n(C,,,, 
+ en) where E, -+ 0. 

Proof: By Fano’s inequality 

nR,=H(W) 

= H( W IY”) + I( w; rn) 

= I( W ; Y”) + nc, 

where E,, + 0 if P,‘“) -+ 0. Now 

(50) 

I(W ; Yn) = h(Y”)- h(Y”IW) 

41 

and 

h(Y”,W) z i h(YJW,Y’-‘) 
i=l 

2 xh( Xi + ZJW, Y’-‘, Xj( W , Yip’), Z’-I) 

g  xh( ZJW, Yfpl, Xi, Z’-‘) 

? x,$( Z,IZ’-l) 

:h(Z”). (54 

Here (a) follows from the chain rule, (b) merely adds 
functions of the conditions, (c) removes the conditionally 
deterministic constant Xi, (d) uses the conditional inde- 
pendence of (W, Yidl, X,) and Zj given Z’-‘, and (e) 
“unchains” the chain rule. 

Thus, as shown by Tiernan and Schalkwijk 141, 

I(W ; Y”) I h(Y”)- h(Z”). (53) 
Finally, by the entropy maximizing property of the normal 
distribution, we have 

1 IWZI 
h(Y”)-h(Z”) ‘~ln------ 

W ’I 
5 nG,FB, (54) 

as given in (12), (13). The converse is thus proved. 

VII. ACHIEVABILITY OF C,,,, 

Before we proceed to prove Theorem 1, we need the 
following definition of jointly r-typical sequences. 

Definition: Let (V”, Y”) be jointly distributed with den- 
sity f(u”, y”) and associated entropy rates as defined in 
(37), 

h,(V) = ;h(V”) 

h,(Y) = fh(Y”) 

h,,(V,Y) = ;h(V”;Y”). (55) 

Then the set A: of jointly c-typical (vn, Y”) is defined by 

A:= (V”,Y”)ER”XR”: 
1 

-ilnf(V”)-h,(V) -cc 

-ilnf(Y”-h,(Y)l<c 

-ilnf(V”.Y”)-h,(V,Y) 56 . (56) 
I i 

Let V(Af) denote the volume of A:. We  have the 
following bound on the volume of the typical set. (51) ” -_ 
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Lemma 6: Moreover, 

V(A312 . n(h,(V,Y)+t) 

Proof: By the definition of A:, 

2 J 
2-n(M’, y)+r) dun dy” 

4 

= V( A3-“(&0?)+‘), (58) 

which proves the lemma. 

To show the achievability of C,,ra, let C,,,, be as 
defined by (10) and (ll), where (11) can be written as 

X” = BZ” + V”, (59) 

and where B is a strictly lower triangular matrix, V” and 
Z” are independent, and B and K, achieve C,,,,. 

The proof uses random coding. Let V(l), V(2), . . . , 
V(2nR) be independent identically distributed n-vectors 
drawn according to N,,(O,(l - S)K, + 6P,I), where 0 < 
6 < 1, I is the identity matrix, and P, = tr( K,). Nay by 
Lemma 1 in Section II, (1- 6)K, + 6P,I is nonsingular 
and the AEP will apply. Note that the expected power 
constraint on X is satisfied, i.e., 

5 2-n(h,(V)~r)2~n(h,(Y)-~)d27dy, I 
by the c-typicality of ( V( 1)) Y) , 

I 2n(h,(V,Y)-h,(V)-h,(Y)+3~) 

by the volume bound on A:, 
= 2-n(h,(Y)-h,(YIV)-3~) 
= yn(h,(Y)-h,(RZ+Z)-36) 

= 2-n(hn(Y)-hn(Z)-3~), since IB + 11 = 111 =I, 

=~-~((~/~~)~~~[I~B+(~-~)~,+~~,~I/IE(,II-~~) 

64) 
where K, = (I + B)K,(I + B)‘. By continuity of the de- 
terminant as a function of 6, we have 

IK, + (l- 6)K, + 6P,,II -+ IK, + K,I = lKx+zl, as 6 -+ 0. 

(65) 
Thus for 6 sufficiently small, 

Pr { E,IW=l} < 2pn(CnsFB-4r). 

Combining, we have 
(66) 

P,“IPr{E;‘lW=1}+2”RPr{E21W=1} 
I 3,-n(r-(1/2)ln(l+2r)) +2n(R-cn,FR+4c). 

(67) 

Thus there exists a sequence of (2”(Cn.~~-5c), n) codes with 
P,‘“) + 0, as n + 00. Since E > 0 is arbitrary, the theorem is 
proved. 

E~l~X(W,Z)l12=~tr(K,)~P 64 VIII. REMARKSONPOWERCONSTRAINT 

since (l/n) trK, = (l/n) tr((1 - 6)K, + 6PJ). 
Transmission: To send W, the transmitter transmits 

X( W, Z) = BZ + V(W). 
Decoding: The receiver Y declares W  E 2”R was sent if 

(V(F$‘), Y) is the only c-typical pair. 
Error: An error is made if there is no typical (V( $), Y) 

pair, more than one such, or W  # W. 
To analyze the probability of error P,‘“), assume without 

loss of generality that W  =l was sent. Thus Y = Xf Z = 
BZ + V(1) + Z. Define the events 

Ei= (V(i),Y) E A:, i=1,2,...,2nR (61) 

Throughout this paper, we found the capacity under an 
expected power constraint 

itr(K,) = Ei $ Xf(W,Y’-‘) I P. (68) 
1-l 

From a stricter point of view, we should declare an error 
whenever the feedback causes X to use power greater than 
P. Thus we require the stronger condition 

Pr 1 i X:(W,Yipl) > P se. 
l n i=l i 

(69 

A simple sufficiency condition for satisfying the power 
constraint (69) while achieving capacity would be 

and E,‘, the complement of E,. Then itr((Kp))2)+0,asn-+cc (70) 

P,(“)~Pr{E~IW=1}+2”RPr{E21W=1}. (62) where Kp) achieves capacity in (10). This guarantees that 

By the AEP, (47), and the joint normality of V(1) and Y, ; jglx;(w,Y”) + P. (71) 

pr { E;Iw=~) I 3e-“(f-(1/2)1n(1+2r)), for all n. (63) Stationarity of { Zi} certainly suffices. 
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IX. CONCLUDING REMARKS 

Distribution-free error bounds were found for achieving [51 
rates C, FB - c, for each n. Thus no asymptotic statement 
as n -+ cc is required to impart significance to capacity. In [61 
general, feedback does not increase the capacity of a  
Gaussian channel by more than $ bit/transmission. 

[71 

PI 

PI 

[31 
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