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Abstract—This paper considers the problem of communicating
over a relay channel with state when noncausal state information
is partially available at the nodes. We first establish a lower
bound on the achievable rates based on noisy network coding and
Gelfand–Pinsker coding, and show that it provides an alternative
characterization of a previously known bound. We then introduce
the class of state-decoupled relay channels and show that our
lower bound is tight for a subclass of semideterministic channels.
We also compute the capacity for two specific examples of this
subclass—a channel with multiplicative binary fading and a
channel with additive Gaussian interference. These examples are
not special cases of previous classes of semideterministic relay
channels with known capacity.

Index Terms—Capacity, channels with state, compress-and-for-
ward (CF), noisy network coding (NNC), semideterministic relay
channels.

I. INTRODUCTION

T HE relay channel introduced by van der Meulen in 1972
is one of the main building blocks of network information

theory [1]. The capacity, however, is known only for some spe-
cial classes, including reversely degraded [2], degraded [2], and
the channel with orthogonal transmit components [3] as well as
the following semideterministic cases.
1) In [4], El Gamal and Aref showed that if
(i.e., the received signal at the relay is a deterministic func-
tion of the symbols transmitted from the source and the
relay), then the partial decode-and-forward scheme in [2]
achieves the capacity.

2) In [5] and [6], Cover and Kim proved that if the relay has
an orthogonal noiseless link to the destination and

(i.e., the received signal at the relay is a de-
terministic function of the symbols transmitted from the
source and the received signal at the destination), then ei-
ther compress-and-forward (CF) [2] or hash-and-forward
relaying [5], [6] achieves the capacity.

In this paper, we study the relay channel with state, which
consists of a sender (i.e., source), a relay, and a destination. We
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assume that the state is determined by a random parameter, and
that noncausal knowledge of the state is partially available at
the nodes, cf., [7]–[9] for related work. We present a general
lower bound on the achievable rates using the noisy network
coding (NNC) scheme in [10] and the Gelfand–Pinsker mul-
ticoding scheme [11]. Although this achievable rate coincides
with that in [9], it provides an alternative characterization that
leads to a nontrivial optimality result.We then introduce the spe-
cial class of state-decoupled relay channels and show that the
general lower bound is tight for a semideterministic subclass of
these channels. In particular, our results generalize the capacity
results reported in [5, Sec. VIII]. We also compute the capacity
for two specific examples, where we assume multiplicative bi-
nary fading and additive Gaussian interference, respectively.
These examples are not special cases of any of the semideter-
ministic relay channels studied in [4]–[6].

A. Organization

The remainder of this paper is organized as follows. Section II
presents the main channel model and discuss an achievable rate.
Section III introduces the state-decoupled relay channel and es-
tablishes a capacity result. Section IV quantifies the capacity of
a state-decoupled relay channel with antipodal fading. Section V
computes the capacity of a state-decoupled relay channel with
additive Gaussian interference. Finally, Section VI concludes
the paper.

II. RELAY CHANNEL WITH STATE

The discrete memoryless relay channel with random state and
partial channel state information at the nodes

is depicted in Fig. 1. The channel parameters are as follows.
1) and denote the symbol transmitted from
the encoder and the relay, respectively;

2) and are the symbol received at the relay
and the decoder, respectively;

3) is the true random state of the channel and ,
, and denote the partial knowledge of

the channel state at the encoder, the relay, and the decoder,
respectively;

4) denotes the positive matrix factoriza-
tion (pmf) modeling the interaction between the variables

, whose -extension is
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Fig. 1. Three-node relay channel with random state. Partial knowledge of the state is assumed to be noncausally known at the source, the relay, and the destination.

5) denotes the pmf modeling the interac-
tion between the true random state of the channel and its
partial knowledge at the encoder, the relay, and the de-
coder. The -extension is

A code for the relay channel with state consists of
1) an encoder that maps the message uniformly drawn
from the set to according to the map-
ping such that .
That is, the encoder incorporates the noncausal partial in-
formation available about the state.

2) a set of relay functions: such that ,
. That is, the relay acts in a strictly

causal manner on the received signals but it incorporates
the noncausal knowledge of the channel state.

3) a decoder that maps the received signal to an estimate
of the transmitted message according to the mapping

where .
Remark 1: Since we assume block decoding at the destina-

tion, assuming causal knowledge of the channel state at the des-
tination does not affect our results.
The rate is said to be achievable if there exists a sequence

of communication strategies

such that the average error probability at the decoder defined as
goes to zero as . The capacity of

the channel is defined as the supremum of all achievable rates.
In [9], it is shown that the following rate is achievable for the

scenario in Fig. 1:

(1)

(2)

where the supremum is taken over pmfs of the form

(3)

Achievability of the rate in (1) is established using a
Wyner–Ziv-based CF strategy combined with Gelfand–Pinsker

coding.1 Our first result is to establish the following equivalent
characterization of the achievable rate.
Proposition 1: The rate is achiev-

able, where

(4)

(5)

and the supremum is taken over the pmf given in (3).
The proof of this proposition follows by algebraic manipula-

tion of the expressions in (1) and (2), in a similar approach to
that in [12] and is given in Appendix A.
Remark 2 (An Alternative Scheme): In Appendix B, we de-

scribe an alternative coding scheme that also achieves the rate
characterized in Proposition 1. Our new scheme is constructed
using NNC and Gelfand–Pinsker coding and in contrast to that
in [9] does not employ Wyner–Ziv coding. We also note that
the compression of both the received signal and knowledge
of the channel state at the relay are considered in obtaining
an achievable rate.
Remark 3 (Causal State Information): If the state is available

causally at the source and the relay, i.e., and
, then the rate

is achievable where

(6)

(7)

and the supremum is taken over pmfs of the form

Remark 4 (No State Information): If ,
then the expression in Proposition 1 simplifies to that in [10],
where

(8)

(9)

1CF can actually obtain higher rate than the one given in [9]. This is because
(30) in [9] should read , since and are correlated, and
and are correlated through . Thus, the expression given by (1) in [9]

changes to (1) in this paper.
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Fig. 2. State-decoupled relay channel.

and the supremum is taken over pmfs of the form

III. STATE-DECOUPLED RELAY CHANNELS

In this section, we specialize the general setup illustrated in
Fig. 1 to the state-decoupled case and show that the bound in
Proposition 1 is tight for a new semideterministic subclass of
these channels.
We first discuss a motivating example. Consider a net-

work where there is a node that interferes with the main
source–destination pair. If another node (e.g., a relay) in
the network overhears the communication, it can assist
the destination by providing some information regarding
the resulting interference. This scenario can be modeled
by the discrete memoryless state-decoupled relay channel

depicted
in Fig. 2. Note that this channel is a special case of that defined
in Section II with forming a
Markov chain.
In this section, we assume that the sender has no knowledge of

the channel state and the relay and the destination are informed
about the channel state only through and , respectively.We
now show that under this condition of state information avail-
ability, the achievable rate in Proposition 1 is optimal for the
semideterministic special case with .
Theorem 1: The capacity of the semideterministic state-de-

coupled relay channel with strictly causal relaying is

(10)

Proof: We first prove the positive part. By Remark 4, the
capacity is bounded as

(11)

where

(12)

(13)

Now, let . By the channel model assumption,
form a Markov chain and is

independent of ; therefore

(14)

Since , we also have

(15)

This completes the proof of achievability. The converse follows
by the cutset bound and noting that the symbol only
depends on the message, which is independent of the symbol

that depends on the channel state. This completes
the proof.
Remark 5: Theorem 1 subsumes Theorem 3 in [5, Sec. VIII].

This essentially follows by the fact that the channel model
in Theorem 1 includes the channel model in [5, Sec. VIII]
as a special case. To see this, let , ,
and in the general
state-decoupled relay channel. Here, is the signal received
over the direct link from the sender and is the signal
received from the relay over an orthogonal link. Then, without
loss of generality, we can replace the link from the relay to
the destination with a noiseless link with the rate given by

.

IV. FADING RELAY CHANNEL

In this section, we present an example of a semideterministic
relay channel and establish its capacity with strictly causal, ca-
sual, and noncausal state information at the relay.
Consider the state-decoupled semideterministic relay channel

with
(16)

(17)

where and

This example models antipodal signaling with uniform phase
fading at high signal-to-noise ratios. We assume that the sender
has no knowledge of and the relay knows through . The
knowledge of the channel state is transmitted from the relay to



2632 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 5, MAY 2013

the destination over a common channel shared by the sender.
That is, there is no orthogonal channel devoted to convey the
channel state information to the destination. This is in contrast
to previous examples in the literature in which knowledge of the
channel state is conveyed to the destination over an orthogonal
noisy, noiseless, or rate-limited link.
We first note that the direct-link transmission does not con-

tribute to any positive reliable rate since

(18)

While the direct-link transmission fails, we next show that
one can reliably transmit at positive rates by appropriately in-
corporating the relay.

A. Capacity With Strictly Causal Relaying

Proposition 2: The capacity of the relay channel described
by (16) and (17) with strictly causal relaying, i.e.,
is bits per transmission.

Proof: From (16) and (17), we have .
Therefore, the capacity of the channel is given by Theorem 1.
In order to compute the capacity, let ,

, ,
. Then, consider

(19)

where denotes the
binary entropy function. Similarly, consider

(20)

where the last equality follows because

Combining (19) and (20) yields

(21)

This completes the proof.

TABLE I
INPUT AND OUTPUT SIGNALS USING THE CAUSAL RELAY MAPPING

Fig. 3. Semideterministic relay channel with additive Gaussian interference.

B. Capacity With Causal and Noncausal Relaying

Now assume that the signal transmitted from the relay at time
can depend also on the current received channel state at the
relay, i.e., . We next give a simple deterministic code
that achieves the capacity of 1 bit per transmission using in-
stantaneous relaying. Therefore, instantaneous relaying outper-
forms strictly causal relaying for this example.
Proposition 3: The capacity of the relay channel given by

(16) and (17) where , is bit per
transmission.

Proof: The converse is immediate since . We
next prove achievability using a simple scheme as an instance of
the rate discussed in Remark 3. Let the source uniformly choose
its symbol from the set and let the relay use the in-
stantaneous mapping . Then, the inputs and outputs
of the channel are given in Table I. Now, it is easy to observe
that the destination can recover from without any error.
Therefore, one error-free bit can be transmitted from the sender
to the destination. By the upper bound, considering future re-
ceived symbols at the relay, i.e., , does not buy us any gain
for this particular example.

V. RELAY CHANNEL WITH ADDITIVE INTERFERENCE

We consider a second example of state-decoupled semideter-
ministic relay channels and compute its capacity with strictly
causal, causal, and noncausal relaying. We show that one can
achieve higher rates by causal relaying in which the relay em-
ploys a nonlinear memoryless strategy.
Consider the state-decoupled relay channel with

(22)

(23)

where . Further assume that the sender and the
relay operate under average power constraints: and

(see Fig. 3 for an illustration). This example models
an interference-limited scenario in which the additive noise at
the relay and the destination is negligible. We assume that the
sender does not know the interference, but that the relay per-
fectly knows it and what it transmits also creates an interference
at the destination. A similar model but with an orthogonal link
from the relay to the destination is investigated in [13, Sec. VI].
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A. Capacity With Strictly Causal Relaying

Proposition 4: The capacity of the relay channel described
by (22) and (23) with and strictly causal relaying
is

(24)

Proof: We note that the received signal at the relay can be
constructed from , and . That is,
. Thus, we can apply Theorem 1. The proof then follows by

noting that (10) is optimized by choosing and
.

Remark 6: As one of the anonymous reviewers brought to
our attention, the aforementioned capacity result can also be
recovered from that reported in [14, Sec. II].
Remark 7: The relay channel shown in Fig. 3 can be gener-

alized as follows. Let

(25)

(26)

where and are arbitrary functions, is an invertible func-
tion, and denotes the channel state with an arbitrary distribu-
tion. Note that the relay channel given in (25) and (26) is state
decoupled and

(27)

Thus, the capacity of the channel is achieved by NNC or CF and
is given in (10).

B. Capacity With Causal and Noncausal Relaying

Proposition 5: The capacity of the relay channel described
by (22) and (23) where , is unbounded.

Proof: We prove the claim by constructing a nonlinear in-
stantaneous strategy. In the following, let where

is a deterministic function. Note that one can always choose
the function such that , where is a countable
set whose elements are chosen from the real line. The smaller
the power at the relay, the denser the set should be chosen in
order to meet the power constraint at the relay. By this choice
of , the received signal at the destination is given by

where denotes the equivalent additive
discrete noise. Next, let be uniformly distributed over the
interval , where for all

and it also satisfies . Because the effec-
tive interference is discrete, the destination can exactly recover

from , and hence, an arbitrarily high transmission rate is
achievable. This scheme can also be interpreted as having the
relay transmit the error in quantizing such that is the set
of the reconstruction points of the quantizer, cf., the approach
proposed in [15] (see [15, Fig. 4]).
The channel shown in Fig. 3 is intimately related to the

point-to-point dirty tape channel, in which the received signal

is given by , where is the transmitted
signal, is the additive interference, and is the additive
noise at the receiver. The encoder is assumed to causally
know . Using the terminology of Costa in [16], the earlier
suggested strategy for the noiseless case in fact organizes the
dirt such that the encoder can write on the remaining clean
space. Additionally, this strategy is similar to the “interference
concentration” scheme suggested by Willems in [17]. The sug-
gested strategy can also be considered as a sort of interference
alignment invented by Maddah-Ali et al. [18]. In the language
of interference alignment, the aforementioned scheme operates
in a way that the effective interference is aligned on a countable
subset of the real line and the remaining space is reserved for
the transmission of the desired signal.

VI. CONCLUDING REMARKS

We studied the relay channel with state and presented a lower
bound on the achievable rates based on NNC. We showed that
NNC and CF achieve the same rates. We then considered
the state-decoupled relay channel, established the capacity of
a semideterministic class, and demonstrated that capacity is
achieved by NNC. By constructing some examples, we also
showed that one can increase the capacity by causal relaying as
compared to that with strictly causal relaying.
Motivated by the new examples of state-decoupled relay

channels discussed in this paper, we next present a conjecture.
Conjecture 1: The capacity of the state-decoupled relay

channel is

(28)

where

(29)

(30)

and , .
Here, time sharing is used since the objective function is

not convex in general [12]. Conjecture 1 includes that of Han-
Ahlswede and Han in [19, Sec. V] as a special case. This fol-
lows by a similar discussion as that in Remark 5.
Related to the aforementioned conjecture, Tandon and

Ulukus in [20] have established a new upper bound on the ca-
pacity of the state-decoupled relay channel with a noiseless link
from the relay to the destination, which is tighter than the cutset
bound. We also remark that the channel studied by Aleksic et
al. [21] is state decoupled and its capacity is achieved by CF.
For this channel, the upper bound in [20] is tight. This channel,
however, does not fall in the semideterministic classes studied
in [4]–[6] and Theorem 1 and the capacity is yet achieved by
CF.

APPENDIX A
PROOF OF PROPOSITION 1

In order to proceed with the proof, we first present two
lemmas.
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Lemma 1:

(31)

Proof: Consider the following series of equalities:

(32)

where

(33)

This completes the proof of the lemma.
Lemma 2: Let

(34)

be the joint pmf that optimizes the rate
in Proposition 1. Then, for

(35)

Proof: We give the proof by contradiction. We show that if

(36)

then there is another

(37)

that attains a higher rate. Now, let with probability
and otherwise. We observe that both terms under min
in Proposition 1 are continuous in and the first term increases
in , while the second term decreases in . Thus, there exists a
such that

which contradicts (36). This completes the proof of the lemma.

Using Lemma 2, the rate can be
written as

(38)

and using the identity proved in Lemma 1, the rate in Proposition
1 is equivalent to that in (1) and (2). This completes the proof.

APPENDIX B
ALTERNATIVE CODING SCHEME

We next provide an alternative transmission scheme for the
achievable rate in Proposition 1. Our scheme is constructed
using the NNC strategy combined with Gelfand–Pinsker
multicoding. In this scheme, the source transmits a message

in blocks; i.e., repetition coding. We use
binning to utilize the knowledge of the channel states at the
source and the relay. The binning rates at the source and
the relay are denoted by and , respectively. The relay
employs a compression codebook with rate to transmit
a coded compression index denoted by to
the destination. The compression index is binned against the
knowledge of the channel state at the relay prior to its transmis-
sion. The relay compresses both its received noisy signal and
partial channel state information. After receiving the signals
over blocks, the destination performs a joint simultaneous
nonunique decoding to form an estimate of the transmitted
message . We use strong typicality as defined in [22] for
encoding and decoding. For brevity, we use the notation

where
denotes the signal generated, received, or transmitted at th
channel use in th block at node where
and .

1) Codebook Generation: Fix the pmf
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TABLE II
ILLUSTRATION OF THE COMMUNICATION OVER BLOCKS

Then, for each block , randomly and independently
generate sequences

(39)

Similarly, randomly and independently generate
sequences

(40)

For each , ,
, randomly and conditionally independent generate

sequences

(41)

2) Encoding: We next explain the encoding at the begin-
ning of block . Let be the mes-
sage to be sent. The source node looks for the smallest index

such that

(42)

If there is no such index, it picks one at random.
At the end of block , the relay node knows , ,
, and . It then looks for the smallest index such that

(43)

where by convention. If there is no such index, it picks
one at random.
Similarly, the relay node then looks for the smallest index

such that

(44)

If there is no such index, it picks one at random.
Having found and

, the source transmits with i.i.d. components

(45)

and the relay transmits with i.i.d. components

(46)

for .
3) Decoding: Let . The destination

performs the decoding at the end of block . The decoder looks
for a unique index such that

(47)

and for some , , , and for all . (Table II
summarizes the encoding and decoding over blocks.)

4) Probability of Error: Let denote the message
sent from the source node and denote indices chosen at the
relay in the block . Now, define the following events:

(48)

(49)

(50)

(51)

Then, the probability of error can be bounded as

(52)

Using the covering lemma [22], we have

(53)

(54)

(55)
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By the conditional typicality lemma [22]

(56)

We next bound . Define

(57)

Then, consider

(58)

If , but
, then is independent of

. Therefore,
by the joint typicality lemma [22], we have

(59)

where

(60)

Similarly

(61)

where the last equality holds since

(62)

Thus

(63)
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Employing the union bound, we obtain

(64)

Thus, as , the probability of error goes to zero if

We then simplify each term under the min. Consider

(65)

Similarly, consider

(66)

where .
Now, let and . Thus, the rate

(67)

is achievable. This completes the proof of the theorem.
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