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Abstract—The paper investigates the effect of link delays on the
capacity of relay networks. The relay-with-delay is defined as a
relay channel with relay encoding delay of d 2 units, or equiv-
alently, a delay of d units on the link from the sender to the relay,
zero delay on the links from the transmitter to the receiver and
from the relay to the receiver, and zero relay encoding delay. Two
special cases are studied. The first is the relay-with-unlimited look-
ahead, where each relay transmission can depend on its entire re-
ceived sequence, and the second is the relay-without-delay, where
the relay transmission can depend only on current and past re-
ceived symbols, i.e., d = 0. Upper and lower bounds on capacity
for these two channels that are tight in some cases are presented.
It is shown that the cut-set bound for the classical relay channel,
corresponding to the case where d = 1, does not hold for the relay-
without-delay. Further, it is shown that instantaneous relaying can
be optimal and can achieve higher rates than the classical cut-set
bound. Capacity for the classes of degraded and semi-determin-
istic relay-with-unlimited-look-ahead and relay-without-delay are
established. These results are then extended to the additive white
Gaussian noise (AWGN) relay-with-delay case, where it is shown
that for any d � 0, capacity is achieved using amplify-and-for-
ward when the channel from the sender to the relay is sufficiently
weaker than the other two channels. In addition, it is shown that
a superposition of amplify-and-forward and decode-and-forward
can achieve higher rates than the classical cut-set bound.

The relay-with-delay model is then extended to feedforward
relay networks. It is shown that capacity is determined only by
the relative delays of paths from the sender to the receiver and
not by their absolute delays. A new cut-set upper bound that
generalizes both the classical cut-set bound for the classical relay
and the upper bound for the relay-without-delay on capacity is
established.

Index Terms—Capacity, cut-set bound, delay, relay channel,
relay networks.

I. INTRODUCTION

THIS paper is motivated by the general question of whether
link delays can change the information-theoretic capacity

of a communication network. The answer at first appears to be
that delay should have no effect on capacity, because achieving
capacity requires an arbitrarily long delay. As we shall see this
is not always the case. Link delays can change the nature of
cooperation in a network, and hence its capacity.

First consider a discrete-memoryless point-to-point channel
(DMC) consisting of an input alphabet , an output alphabet

, and a family of conditional probability mass functions (pmfs)
on for each . If the sender transmits at time
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Fig. 1. DMC-with-delay and its graphical representation.

Fig. 2. (Left) Classical relay channel. (Right) Graphical representation for
relay-with-delay; d = 1 corresponds to classical relay, d = 0 corresponds to
relay-without-delay.

, then the received symbol at the receiver is chosen ac-
cording to . Now, suppose there is a finite transmission
delay of , then if is transmitted, the received symbol

at time is chosen according to . We refer
to this channel as DMC-with-delay and represent it graphically
as shown in Fig. 1. Now, by applying a decoding delay of , it is
easy to see that the capacity of the DMC-with-delay is the same
as the capacity with no delay. Similarly, it can be easily shown
that finite link delays do not change the capacity region for the
multiple-access channel or the broadcast channel.

The story for the relay channel is quite different. Recall that in
the classical relay channel model introduced by van der Meulen
[1] and studied extensively in the literature (e.g., [2], [6], [10]),
each transmitted relay symbol can depend only on its past
received symbols (see Fig. 2 (left)). This “encoding delay”
can be equivalently represented by a link delay. By assuming
zero encoding delay and adding a delay of to the link from the
sender to the relay receiver and a delay of zero to the other
two links, we obtain the equivalent model in Fig. 2(right). If we
now assume that the link from the sender to the relay receiver
has a delay of (instead of ), we obtain the relay-without-
delay model studied in [7], [8], which in turn can be viewed as
a relay channel where each transmitted relay symbol depending
on present as well as past received symbols, i.e., depends on

. As shown in [7], [8], [11], this seemingly minor change to
the channel model increases its capacity by allowing the sender
and the relay sender to instantaneously cooperate.

In this paper, we provide a more unified and complete treat-
ment of the results in these papers and in [9]. We introduce
the more general relay-with-delay model, where there is a finite
delay on the link from the sender to the relay receiver

(see Fig. 2). As we shall see in Section VI, this is equivalent
in capacity to having arbitrary delays on all three links. Thus

• corresponds to the classical relay;
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• corresponds to the relay-without-delay;
• corresponds to relay encoding delay of ; and
• corresponds to a look-ahead of at the relay

encoder.

We also introduce the relay-with-unlimited-look-ahead model,
where the relay knows its entire received sequence noncausally
and thus each transmitted relay symbol can depend on the entire
received sequence . While this scenario does not currently
have a clear practical motivation, it provides a limit on the extent
to which relaying can help communication.

We present upper and lower bounds on capacity for the
relay-with-unlimited-look-ahead and the relay-without-delay
and show that they are tight in some cases. The lower bounds
discussed are achieved using combinations of coherent cooper-
ation strategies that depend on delay.

1) Decode-and-forward: Here the relay decodes part or all of
the message and the sender and relay cooperate on sending
the previous message [2]. This requires knowledge only
of past received relay symbols and therefore is possible to
implement for any finite .

2) Instantaneous relaying: Here the relay sends a function
only of its current received symbol. This is possible when
the relay has access to the current received symbol, which
is the case for any .

3) Noncausal decode-and-forward: This scheme is possible
only when the relay has unlimited look-ahead. The relay
predecodes part or all of the message before communica-
tion commences and cooperates with the sender to transmit
the message to the receiver.

We then generalize the relay-with-delay model to relay net-
works with delays and present results on capacity including a
new cut-set type upper bound.

Our results have several interesting implications.

• The well-known cut-set bound [2], [5] is not in general an
upper bound on the capacity of a relay network with link
delays.

• Instantaneous relaying alone can achieve higher rates than
the cut-set bound.

• Amplify-and-forward can be optimal for the “full-du-
plex”additive white Gaussian noise (AWGN) relay-with-
delay for . This is in contrast to the classical case
where capacity is not known for any finite channel gain
values.

• A mixture of cooperation strategies may be needed to
achieve the capacity of a relay-with-delay.

• The capacity of a relay network with delays depends only
on the relative path delays from the sender to the receiver,
and not on absolute delays.

The following is an outline of the paper and the main results.

• Section II introduces needed definitions for the relay-with-
delay and briefly reviews results on the capacity of the clas-
sical relay.

• Section III deals with the relay-with-unlimited-look-ahead.
We discuss this case first because the upper bound on ca-
pacity provided is used in subsequent sections.

— An upper bound on capacity, and thus on the capacity
of the relay-with-delay for any is established in The-
orem 1.

— Lower bounds on capacity based on “noncausal” de-
code-and-forward and partial decode-and-forward are
provided in Propositions 1 and 3, respectively.

— Capacity is established for the classes of degraded and
semi-deterministic relay-with-unlimited-look-ahead in
Propositions 2 and 4, respectively.

• Section IV deals with the relay-without-delay and has a
parallel structure to Section III.
— An upper bound on capacity, which is in general tighter

than both the classical cut-set bound and the upper
bound in Theorem 1, is established in Theorem 2.

— A lower bound on capacity achieved by instantaneous
relaying is provided in (15). It is shown through an ex-
ample that this lower bound can be tight even for a
relay-with-unlimited-delay, and can achieve higher rates
than the classical cut-set bound.

— A lower bound achieved by a superposition of instan-
taneous relaying and partial decode-and-forward is pre-
sented in Proposition 5.

— The lower bound is shown to be optimal for degraded
and semi-deterministic relay-without-delay in Proposi-
tions 6 and 7, respectively.

• Section V deals with the “full-duplex” AWGN relay-with-
delay.
— It is shown in Proposition 9 that when the channel from

the sender to the relay is sufficiently weak, amplify-and-
forward is optimal even for the unlimited look-ahead
case.

— It is shown that a superposition of amplify-and-forward
and decode-and-forward can achieve higher rates than
the classical cut-set bound.

— The capacity of the AWGN relay-with-unlimited-look-
ahead is established for the case when the channel from
the relay to the receiver is sufficiently strong in Propo-
sition 8.

• Section VI, deals with general feedforward relay networks
with delays.
— It is shown in Theorem 3 that two relay networks that

differ only in their link delays have the same capacity
if the relative delay of every path from the sender to the
receiver (relative to the minimum delay path) is the same
in both networks.

— An upper bound that generalizes the classical cut-set
bound and the bound for the relay-without-relay in The-
orem 2 is given in Theorem 4. The bound involves the
use of auxiliary random variables and multiple random
variables per sender.

• Section VII discusses open questions and possible exten-
sions of this work.

II. PRELIMINARIES

The discrete-memoryless relay-with-delay channel consists
of a sender alphabet , a receiver alphabet , a relay sender
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alphabet , a relay receiver alphabet , and a family of con-
ditional pmfs 1 on , one for each

. We assume a delay of on the link
from the sender to the relay receiver , and zero delay on
the other two links (see Fig. 2). The channel is memoryless in
the sense that for any block length

where the pmfs with symbols that do not have positive
time indices are arbitrary. Note that the common notation

and are
used throughout.

A code for the relay-with-delay consists of: i) a set
of messages , ii) an encoding function that maps each
message into a codeword of length , iii)
relay encoding functions

, for , and iv) a decoding function that maps
each received sequence into an estimate .

A rate is said to be achievable if there exists a sequence
of codes with , as

. Channel capacity of a relay-with-delay, denoted by , is
the supremum over the set of achievable rates. Note that is
monotonically nonincreasing in .

Thus, corresponds to classical relay with capacity
and corresponds to relay-without-delay with capacity .

To simplify notation for the discussion on the relay-with-
delay, we use the following equivalent definition.

Look-Ahead Notation: We assume zero delay on all links and
relay encoding delay of , or equivalently a look-ahead of
for . Thus, the relaying functions for are now of
the form: . In Section VI, we revert to the delay
notation mentioned earlier to prove results for general networks.

We define the relay-with-unlimited-look-ahead as a
relay channel where the relaying functions are of the form

and denote its capacity by .

Remarks:
1) Capacity of the relay-with-delay, , is monotonically

nonincreasing in , as the dependency of relaying func-
tions on more received symbols cannot hurt.

2) Capacity of the relay-with-delay, , is not known in gen-
eral for any finite .

3) In this paper, we only consider the case of . Although
it is quite realistic to assume delay , we have no
new results to report on this case beyond straightforward
applications of known results for the classical relay.

4) A seemingly more general definition of relay-with-delay
would be to have arbitrary delays on the link from

to , on the link from to , and on
the link from to as shown in Fig. 9(a). As we show in
Example 7 in Section VI, capacity in this case is the same

1In the classical relay, the probability transition function is defined in a more
general way as p(y; y jx; x ). The restriction in our definition is to avoid instan-
taneous feedback from X to Y , which can occur because of the introduction
of delay.

as the capacity of the relay-without-delay as defined above
with .

5) The definition of the relay-with-delay is extended to gen-
eral feedforward relay networks with delays in Section VI.

A. Results for Classical Relay

In the classical relay, the transmitted relay symbol is allowed
to depend only on past received symbols. This is equivalent to
the case of . We shall refer to the following well-known
results for this channel.

1) Classical cut-set bound [2]:

(1)

We shall refer to the first term inside the minimum as the
broadcast bound and to the second as the multiple-access
bound. Note that this bound is tight for all cases where
capacity is known.

2) Partial decode-and-forward [2]:

(2)

This is achieved using a block Markov coding scheme,
where, in each block, the relay decodes part of the message
represented by and cooperates with the sender to help
the receiver decode the message sent in the previous block.
This scheme reduces to the decode-and-forward scheme
where the relay decodes the entire message, which leads
to the generally looser lower bound

(3)

Note that in partial decode-and-forward, the sender and
relay coherently and noiselessly cooperate but with a very
large delay.

3) Compress-and-forward with time-sharing [10]: 2

(4)

4) Capacity theorems:
(a) Degraded relay channel [2]: Here

form a Markov chain. Capacity is given by

(5)
and is achieved using decode-and-forward.

(b) Semi-deterministic relay channel [6]: Here
. Capacity is given by

(6)

and is achieved using partial decode-and-forward
with .

2The conditioning on Y in the last mutual information term was mistakenly
dropped in [10].
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III. RELAY-WITH-UNLIMITED-LOOK-AHEAD

In this section, we provide upper and lower bounds on the
capacity of the discrete-memoryless relay-with-unlimited-
look-ahead, where the relay function at any time can depend on
the entire received sequence .

A. Upper Bound on

In the following, we provide an upper bound on . Note that
since for all , this is an upper bound on for any

. We show later that this bound can be strictly larger than the
classical cut-set bound (1) for (and thus for any ).
For , the classical cut-set bound applies and therefore this
bound is uninteresting.

Theorem 1: The capacity of the discrete memoryless relay-
with-unlimited-look-ahead is upper_bounded as follows:

(7)
Proof: We prove a weak converse. Using Fano’s inequality,

it follows that

for some as .
We bound the term in two ways. First consider

where inequality holds because conditioning reduces en-
tropy and equality holds because the channel is memory-
less, is a “time-sharing” random variable taking values in

, and is independent of , , , and , and
, , and . Inequality holds by

the concavity of mutual information.
Next, consider

(8)

The first term is upper-bounded as follows:

Equality holds because the channel is memoryless.
Now, we bound the second term in (8)

Hence

Equality holds because for relay-with-unlimited-look-
ahead , and holds because the channel is
memoryless. This completes the proof.

Remark: Note that while the first bound in the above upper
bound (7) coincides with the multiple-access bound in the clas-
sical cut-set bound (1), the second bound is increased over the
broadcast bound by
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Fig. 3. Sato’s example in which X = Y = Y = f0; 1; 2g, X = f0;1g,
and Y = X .

This represents the potential rate gain achieved by using future
and present in addition to past received relay symbols.

B. Noncausal Decode-and-Forward Lower Bound on

Since the relay knows before transmission commences, it
can, assuming the rate is sufficiently low, decode part or all of
the message. The sender and relay can then cooperate to send the
message to the receiver. We refer to such a scheme as noncausal
decode-and-forward. The following establishes a lower bound
based on complete decodability of the message by the relay.

Proposition 1: The capacity of the relay-with-unlim-
ited-look-ahead is lower-bounded as

(9)

Proof: To prove achievability of the right-hand side ex-
pression, we use a random coding argument. We fix a joint
pmf and generate codeword pairs
for according to . Since the relay
knows in advance, it decodes before transmission com-
mences. This can be achieved provided . The
sender and relay then cooperatively transmit . The
receiver can reliably decode provided .
Combining the two bounds completes the proof.

We now show that this lower bound is tight for the degraded
relay-with-unlimited-look-ahead.

Proposition 2: The capacity of the degraded relay-with-un-
limited-look-ahead is given by

(10)

Proof: Since for the degraded relay channel,
form a Markov chain, the second term in (7)

reduces to . This upper
bound coincides with the lower bound in (9), which completes
the proof.

To illustrate this result, consider the following degraded
relay-with-unlimited-look-ahead example.

Example 1: Consider the relay channel example introduced
by Sato [14] in Fig. 3. In [14], Sato used first- and second-order
Markov processing at the relay to find achievable rates for
the classical case of 1.0437 and 1.0549 bits/transmission, re-
spectively. By noting that this channel is physically degraded,
in [2], it was found that the capacity for the classical case,

1.161878 bits/transmission. This rate is achieved

TABLE I
CAPACITY ACHIEVING INPUT DISTRIBUTION p (x; x )

using decode-and-forward coding and coincides with the clas-
sical cut-set bound.

We now show that the capacity of Sato’s relay-with-unlim-
ited-look-ahead is given by

1.169925 bits/transmission (11)

To prove this, we compute the capacity expression in (10). Let
for and . Then the

first term in (10) can be rewritten as

The second term is given by

Both and are concave functions of . Now,
given a joint distribution , consider the joint distribution

and
. It is easy to see that and

are higher for than for and that
. Therefore, the maximizing input

distribution is obtained when
and . Maximizing the minimum of the two terms
subject to these constraints yields and the
maximizing input distribution in Table I.

Remarks:
1) Since for this example and coincides with the

classical cut-set bound, we conclude that the upper bound
in Theorem 1 can be strictly larger than the classical cut-set
bound.

2) F. Willems has pointed out to the authors that any relay-
without-delay for which is a special case of sit-
uation in [17], which deals with the multiple-access
channel with cribbing encoders. Note that for this case, the
capacity region does not increase by having more than zero
look-ahead. Using this observation, it also follows that

Later, we show that the same rate can be achieved when
, thus showing that

We can generalize the above decode-and-forward scheme by
having the relay decode only part of the message. In addition to
cooperating with the sender to transmit this part of the message,
the sender superimposes additional information destined only to
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the receiver. This scheme, which we refer to as partial noncausal
decode-and-forward, yields the following lower bound on .

Proposition 3: The capacity of the relay-with-unlim-
ited-look-ahead is lower-bounded as

(12)

Proof: Achievability is straightforward. Split the rate into
cooperation rate and superposition rate . The total rate is
thus . For the scheme to work reliably, we must
have

The desired bound follows by adding the last inequality to
each of the first and second inequalities.

Note that this lower bound is tight for the class of semi-deter-
ministic relay channels with unlimited look-ahead.

Proposition 4: The capacity of the semi-deterministic relay-
with-unlimited-look-ahead channel is given by

(13)

Proof: Achievability follows from Proposition 3 by setting
. The converse follows by noting that the right-hand side

of (13) coincides with the upper bound of Theorem 1.

IV. RELAY-WITHOUT-DELAY

Here we provide upper and lower bounds on the capacity
of the discrete-memoryless relay-without-delay and show that
they are tight in some cases. Further, we show that rates higher
than the classical cut-set bound can be achieved.

A. Upper Bound on

In the case of the relay-without-delay we obtain the following
bound, which is in general tighter than the bound in (7).

Theorem 2: The capacity of the relay-without-delay channel
is upper-bounded as follows:

(14)

where , and the cardinality of the auxiliary
random variable is upper-bounded as .

Proof: Assume there is a sequence of codes for
the relay-without-delay channel with as .
From the structure of the channel and codes, the empirical prob-
ability distribution over , for any , is of
the form

For , define the random variable . Note that
. We show that

form a Markov chain as follows. Consider

where follows by the memorylessness of the channel and the
facts that i) is conditionally independent of , ,
given , and ii) is conditionally independent of ,
given , (because ).

Now, using Fano’s inequality

as

Again, we bound the mutual information term in two ways as
follows. First consider

where equality follows from the fact that
form a Markov chain, is a time-

sharing random variable, and , , ,
and .

Next consider
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where equality follows from the fact that
form a Markov chain.

The bound on cardinality can be proved using the same argu-
ment as in [4, p. 310]. This completes the proof.

Remarks:
1) Note that a similar upper bound can be proved for the clas-

sical relay channel. However, since in this case is a
function only of , the bound readily reduces to the clas-
sical cut-set bound.

2) F. Willems pointed out to the authors that the above bound
can be expressed as a cut-set bound for a relay channel with
an appropriately defined relay sender. Consider a relay
sender alphabet of cardinality , which consists
of all mappings . Then bound (14) reduces
to

Note that this is analogous to the Shannon expression of
the capacity of the discrete-memoryless channel with state
known causally at the encoder.

B. Instantaneous Relaying Lower Bound on

Note that any lower bound on the capacity of the classical
relay channel, e.g., using partial decode-and-forward (2) or
compress-and-forward (4), is a lower bound on the capacity of
the relay-with-delay. But, one expects that higher rates can be
achieved using present and future received symbols in addition
to past symbols. Here we present instantaneous relaying, which
is the simplest such scheme, and show that this simple relaying
scheme can be optimal.

In instantaneous relaying, the relay at time transmits a func-
tion only of the received symbol . Note that such a scheme is
feasible for any , but not for classical relay, where .

Using this scheme, the relay-with-delay reduces to a point-to-
point discrete-memoryless channel with capacity

(15)

This provides a lower bound on for any .
In the following example we show that instantaneous relay

alone can be optimal.

Example 2: In Example 1, we showed that the capacity
of the Sato relay-with-unlimited-look-ahead is given by

1.169925 bits/transmission. We now
show that this capacity can be achieved using only instan-
taneous relaying. We consider instantaneous relaying with

input pmf and a mapping from to of
. It can be easily shown that these choices

achieve 1.169925 bits/transmission. Thus, the capacity of the
Sato relay-without-delay .

Remarks:
1) This result is not too surprising. Since the channel from

the sender to the relay is noiseless, complete cooperation,
which requires knowledge of the entire received sequence
in advance, can be simply achieved using instantaneous
relaying.

2) Since and coincides with the
classical cut-set bound, this result shows that instantaneous
relaying can achieve higher rates than the classical cut-set
bound.

C. Partial Decode-and-Forward and Instantaneous Relaying

As mentioned earlier, any coding scheme for classical relay,
which uses only past received symbols, can be used for the
relay-without-delay. Further, we have seen that instantaneous
relaying, which uses only the present symbol, can achieve
higher rates than any of these schemes. In general, an optimal
coding scheme for the relay-without-delay may need to exploit
both past and present received symbols. This can be done, for
example, by combining instantaneous relaying with any known
scheme for classical relay. The following lower bound on is
obtained by a superposition of partial decode-and-forward and
instantaneous relaying. We show later that this lower bound is
tight for degraded and semi-deterministic relay-without-delay
channels.

Proposition 5: The capacity of the relay-without-delay
channel is lower-bounded as follows:

(16)

Sketch of the Proof: Achievability of the above bound fol-
lows by combining the partial decode-and-forward scheme and
instantaneous relaying. The auxiliary random variable rep-
resents the information decoded by the relay in the partial de-
code-and-forward scheme and represents the information sent
cooperatively by both the sender and the relay to help the re-
ceiver decode the previous . The proof of achievability fol-
lows the same lines as that for the partial decode-and-forward
scheme in [2]. We therefore only provide an outline.

Random Code Generation: Fix a joint pmf and a
function . Each message is represented
by an index pair , where and .
Thus, . Generate independent and identically
distributed (i.i.d.) sequences for according
to . For each , generate i.i.d. sequences

for according to . Ran-
domly partition the set of indices into bins. For
each , generate i.i.d. sequences
for according to .

Encoding: A block Markov coding scheme is used as in
the partial decode-and-forward scheme. To send in block

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2010 at 17:23:52 EST from IEEE Xplore.  Restrictions apply. 



3420 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007

, the sender sends , where
is the bin index for . We assume that the relay has suc-
cessfully decoded at the end of block and thus
knows its bin index . At time , the relay sends

.
Decoding: Upon receiving at the end of block , the

relay decodes . This can be reliably done provided

The receiver first decodes , which can be done provided

The decoder then decodes , which can be done provided

Finally, the decoder decodes (and thus the message
sent in block ). This can be done provided

Combining the above inequalities shows that any

is achievable. This completes the outline of the proof of Propo-
sition 5.

Remarks:
1) If , the bound reduces to partial decode-and-for-

ward. If , the scheme reduces to a superposition
of decode-and-forward and instantaneous relaying, which
gives the looser bound

(17)

Also, if , the bound reduces to (15), which is
achieved using instantaneous relaying only.

2) One can similarly combine compress-and-forward with
time sharing for the classical relay channel [10] and in-
stantaneous relaying to establish the lower bound on

(18)

D. Capacity Theorems for Relay-Without-Delay

We show that the lower bound obtained using superposition
of instantaneous relaying and partial decode-and-forward is
tight for degraded relay-without-delay channels.

Proposition 6: The capacity of the degraded relay-without-
delay channel is given by

(19)

where .

Fig. 4. AWGN relay channel.

Proof: Achievability follows from Proposition 5 by setting
, i.e., using decode-and-forward with instantaneous re-

laying. The converse follows from the upper bound of Theorem
2. Consider the second mutual information term in (14)

Equality follows by the definition of degradedness,
, and the fact that . This completes

the proof of the proposition.

The following shows that superposition of decode-and-for-
ward and instantaneous relaying is also optimal for semi-deter-
ministic relay-without-delay channels.

Proposition 7: The capacity of the semi-deterministic relay-
without-delay channel is given by is

-

Proof: Achievability follows from Proposition 5. To show
this, set in the achievable rate (16). Consider the second
term under the

Step follows from the fact that .
The converse follows from the upper bound of Theorem 2.

This completes the proof of the proposition.

V. AWGN RELAY-WITH-DELAY

Consider the general “full-duplex” AWGN relay channel
model in Fig. 4. The parameters and are the path gains for
the channels from to and to , respectively, normal-
ized with respect to the gain of the channel from to , which
is set equal to . The AWGN components and

are assumed to be independent. Further, we
assume an average power constraint on each of the sender
and relay sender .

To make our exposition self-contained, we first summarize
relevant known results on the capacity of the classical case,
where .

1) The capacity of the classical AWGN relay channel is not
known for any nonzero and .
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Fig. 5. Plot of capacity for unlimited look-ahead, the classical cut-set bound (20), and decode-and-forward versus P , for N = 1, a = 2, and b = 1.

2) Classical cut-set bound [10]:

if

otherwise
(20)

where we use the conventional notation
.

3) Decode-and-forward [10]:
It was shown in [10] that partial decode-and-forward re-
duces to decode-and-forward and gives the lower bound

if

otherwise.
(21)

Note that this bound is never equal to (20) for any finite
and . Further the bound reduces to , i.e., the

capacity of the direct channel, when .
Now, consider the AWGN relay-with-delay for . It is

straightforward to show that the upper bound on the capacity
of the relay-with-unlimited-look-ahead (7) is achieved by
Gaussian 3 and thus reduces to

(22)

where .

3In contrast, the distribution on (V;X;X ) that maximizes the tighter bound
on the capacity of the relay-without-delay (14) is not known (and we do not
believe that it is in general Gaussian).

In Sections V-A and -B, we discuss lower bounds for the
relay-with-unlimited-look-ahead and the relay-without-delay
and show that they are tight in some cases.

A. AWGN Relay-With-Unlimited-Look-Ahead

Here we show that the lower bound in (10) coincides with the
upper bound (22) when the channel from the sender to the relay
is sufficiently stronger than the other two channels.

Proposition 8: The capacity of the AWGN relay-with-unlim-
ited-look-ahead for is given by

(23)

Proof: First we evaluate the lower bound in (10) for the
AWGN relay channel using Gaussian to obtain

Note that for , the second term is smaller than the first.
Next consider the upper bound (22). If , the first term

is smaller than the second and is maximized when . Thus,
we have

This coincides with the lower bound, which completes the proof.

Fig. 5 compares the capacity for unlimited look-ahead
(where complete cooperation is achieved), decode-and-for-
ward, where delayed cooperation is used, and the classical
cut-set upper bound for , , and . The gap
between decode-and-forward and the capacity in the unlimited
look-ahead case (which is the maximum achievable rate for
any ) represents the highest potential increase in rate by
utilizing look-ahead.
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Fig. 6. AWGN relay-without-delay with amplify-and-forward.

B. AWGN Relay-Without-Delay

In the following, we show that the capacity of the AWGN
relay-without-delay is known when the channel from the sender
to the relay is sufficiently weak. Note that this is in contrast
to AWGN classical relay, where capacity is not known for any
finite and .

Proposition 9: The capacity of the AWGN relay-without-
delay for is given by

(24)

Proof: Note that if , then the second term in (22)
becomes smaller than the first. Further, it is easy to see that the
difference between the first and second terms in this case is a
strictly increasing function in . Thus, setting
maximizes the second term and we obtain

for (25)

To obtain a lower bound on capacity, consider the following
simple “amplify-and-forward” achievability scheme, which is
a special case of instantaneous relaying (see Fig. 6). For time

, set for some constant gain parameter .
With this substitution, the channel reduces to the point-to-point
AWGN channel

(26)

Applying the average power constraint on (with equality)
gives

Substituting, in (26) and maximizing the capacity of the equiv-
alent point-to-point AWGN channel gives

for

Interestingly, the maximized capacity using for
is given by . If, in addition

, i.e., , then this achievable
rate coincides with the upper bound (25), which completes the
proof.

Remarks:
1) Because coincides with the upper bound on

for , under this
condition for all .

2) Note that coincides with the classical cut-set
bound (20) for . Thus, the
classical cut-set bound can be achieved when .

3) From the above result and Proposition 8, we know for
all parameter values except for the very small parameter
range .

We now show that the capacity of the AWGN relay-without-
delay can be strictly higher than the classical cut-set bound.

Example 3: Consider the following special case of the
scheme involving superposition of decode-and-forward en-
coding with instantaneous relaying, which achieves the lower
bound (16). Let , where
and are independent, where and

, and choose as a normalized convex combination
of and of the form

where and is a normalizing parameter.
Using the power constraint on the relay sender with

equality, we obtain

Substituting the above choice of distribution on into
the expression (16) gives

(27)

Fig. 7 compares the above achievable rate to the classical cut-set
bound (20) and the general upper bound on the capacity of relay-
with-delay (22) for , , and .

Thus, the capacity of the AWGN relay-with-delay can be
strictly larger than the capacity of its classical counterpart for

.

VI. RELAY NETWORKS WITH DELAYS

In this section, we investigate the effect of link delays on ca-
pacity for feedforward relay networks, i.e., relay networks with
no feedback, which we refer to as relay networks with delays
(see Fig. 8). We first introduce some graph theoretic notation
needed for its definition. Consider a weighted, directed acyclic
graph (DAG) , where is the set of
nodes (vertices) and is the set of directed edges. We assume
that node 1 has only outgoing edges and node has only in-
coming edges. To prevent trivialities, we further assume that
each node lies on a path from 1 to . The weight of an edge

is denoted by . We need the fol-
lowing definitions:

1) for , i.e., is the set of
nodes with edges incident on ;

2) ;
3) is the weight of a minimum-weight-path from node 1

to node for ; and
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Fig. 7. Plot of the achievable rate for the AWGN relay-without-delay (27), the classical cut-set bound (20), and the upper bound on the capacity of the AWGN
relay-with-unlimited-look-ahead (22) versus P , for N = 1, a = 2, and b = 1.

Fig. 8. Relay network with delays.

4) is the weight of a maximum-weight-path from node
1 to node for .

In the definitions that follow, an edge corresponds to a com-
munication link, a graph corresponds to a communication net-
work, and the weight of an edge corresponds to the delay on that
communication link. Hence, we refer to the weight of a path as
the delay of a path.

A discrete-memoryless relay network with delays consists
of: i) a weighted DAG , , where
node 1 is the sender and node is the receiver and the rest
are relay nodes, ii) a set of symbols taking values in finite al-
phabets associated with each node, where is associ-
ated with the sender node 1, is associated with the
receiver node , and , are associated with
relay sender–receiver pair , and iii) a family of conditional pmfs

.4

The weight assigned to edge corresponds to the
delay on that link in the sense that the received symbol at node

at time depends on the transmitted symbol at node at time
. The pmf of the received symbol at node at time

depends only on the transmitted symbols at the nodes with

4Unlike our definition for the relay-with-delay, here we do not condition on
any y variables for simplicity of exposition.

edges incident on node and is given by
, which can be written as using the shorthand

notation defined earlier.
The network structure results in a factorization of the condi-

tional pmf of the received symbols at any set of nodes
and time indexes of the form

(28)
The network is memoryless in the sense that at any node and

for any

(29)
The received symbol, , is considered to be arbitrary for

.
A code for the discrete-memoryless relay network

with delays consists of: i) a set of messages , ii)
an encoding function that maps each message into a code-
word of length , iii) relay encoding functions

for and ,
and iv) a decoding function that maps each received sequence

into an estimate .

A rate is achievable if there exists a sequence of
codes with as . The network
capacity, , is defined as the supremum of achievable rates.

Remark: Note that there is no loss of generality in assuming
to be nonnegative, since by Theorem 3 below, only relative

path delays matter for capacity. Thus, we can always convert a
network with arbitrary link delays to one with the same capacity
that has only nonnegative delays.
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Fig. 9. Example relay network with delays. (a) Relay-with-delay. (b) Two-
relay network with delays.

To help understand these definitions, consider the following
illustrative examples:

Example 4 (Relay-Without-Delay): Here
and as in Fig. 9(a). The delays are

and thus, .
Furthermore, . The conditional pmfs are of
the form

Example 5 (Classical Relay): Here and
as in Fig. 9(a). The delays are ,

, and thus, and .
Furthermore, .

The conditional pmfs are of the form

Example 6 (Two-Relay Network): Fig. 9(b) depicts the
two-relay network. Here and

. The delays are ,
, , and thus, ,

, and . Furthermore, , ,
and .

The conditional pmfs are of the form

In Sections VI-A and -B we present two results. The first con-
cerns the question of when does delay not change the capacity
of a network. The second result is an upper bound on capacity
that generalizes both the cut-set bound for relay networks [5]
and the upper bound in Theorem 2 for the relay-without-delay.
This bound involves the use of auxiliary random variables and
multiple random variables per sender.

A. Only Relative Delays Matter

In this subsection, we show that as far as network capacity is
concerned, only relative path delays matter.

Theorem 3: Consider two relay networks with delays with
the same directed acyclic graph (DAG) and the same
associated sets of symbols and conditional pmfs but different
link delays and . Let , be the
delay of path from the sender to the receiver. If there exists an
integer such that for every path , i.e.,
if all paths in both networks have the same relative delays, then
the two networks have the same capacity.

Proof: We use and to refer to the two relay net-
works. We denote the transmitted and received symbols in
by and , respectively, and those in by and . We use the
subscript to refer to probabilities and quantities such
as , in network .

Suppose we are given a code for network . This
includes i) the encoding function ,
ii) relay encoding functions for

and all with the convention that the function takes an
arbitrary value when , and iii) a decoding function

that uses the received sequence .

The decoder uses to decode the index that was
sent using the codeword sent from node 1. Hence, for this
code, the probability of error in network depends only on
the following conditional probability:

Let be the minimum of the delays on paths from node to
node and define . Then using (45) in the Appendix,
the above conditional probability can be written as follows. For
network , , see (30) at the bottom of the page.

For , let

(31)

(32)

Next we construct a code for network using the
one for with the same probability of error. This code for

uses the same encoding function as that for . The de-
coding function is also the same except that it uses the received
sequence . The relay encoding function at node

at time is denoted by in and by in . The relay en-
coding functions for in are chosen as follows:

(33)

and both functions take the same arbitrary value when .

(30)
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Let denote the indicator function of event . Consider
any node . Then

(34)

(35)

Equality holds in (34) because of (31) and the relationship be-
tween the relay encoding functions in and given by (33).

This shows that the terms of the form in (30) are
equal for both networks and . Next we show that terms
of the form are also equal for both networks. To
show this, we proceed as follows. Let and be the
delays of two paths from node 1 to node in network and
let and be the corresponding quantities in . We
claim that

(36)

If node has only one incoming edge then the above equation is
trivially true since both sides are equal to . Suppose node has
two or more incoming edges and that the above equation does
not hold. Then there are two distinct paths from node 1 to node

such that the . Since each node
lies on a path from node 1 to node , it follows that there are
two distinct paths from node 1 to node such that they do not
have the same relative delay in both networks. This contradicts
our hypothesis and hence the claim in (36) holds.

Observe that is the delay on a path from
node 1 to node in and is the delay of the
same path in . Further, due to our hypothesis, the maximum
delay path from node 1 to any node is the same in both net-
works. Hence, it follows from (36) that

(37)

Now for any node and , we have

(38)

(39)

(40)

where (38) follows from (31) and (32), and (39) holds due to
(37).

Using (35) and (40) for the factorization as in (30) for and
, it follows that

Thus, we have shown that using the code that achieves rate
in , we can obtain a code for that achieves the same rate.
The same argument implies that any rate that can be achieved in

can also be achieved in . As a result both networks have
the same capacity.

Remark: The condition in the theorem can be checked
in time, even though the theorem appears to require
checking all path delays from node 1 to node . We provide
a brief description of an algorithm for checking this condition
and leave it to the reader to verify the details.

Note that since the relay network with delays consists of a
DAG, there exists an ordering of the nodes, ,

, such that . In other words, there exists
an ordering such that all incoming edges to any node are from
previous nodes in the ordering. Consider the subset of nodes
that have more than one incoming edge. If this subset is empty
there is only one path in the network. Otherwise, consider each
vertex in this subset according to the above ordering and check
if the relative delay of the shortest path from node 1 through each
incoming edge is the same in both networks. It can be verified
that the condition in the theorem is satisfied if and only if the
above check is satisfied at each node of this subset.

We now demonstrate the implications of the above theorem
for some simple networks.

Example 7: Consider the relay channel in Fig. 9(a). There
are two paths from the sender to the receiver. The direct path
has delay and the other path has delay .
Hence, by Theorem 3, the capacity of this network remains un-
changed if is replaced by
and and are set to .

In particular, if , , the
relative delays are the same as that for the relay-without-delay,
in which there are two paths each with delay . The above result
implies that both these networks have the same capacity.

Example 8: Consider two two-relay networks and
having the same DAG and conditional pmfs as shown in
Fig. 9(b). Let the delays for be , ,

, , and for be ,
, , . Both networks have two

paths from the sender to the receiver with path delays in
and in , respectively. Since the relative delays in

both networks are the same, the above result implies that
and have the same capacity.

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2010 at 17:23:52 EST from IEEE Xplore.  Restrictions apply. 



3426 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 10, OCTOBER 2007

Fig. 10. An illustration of the sets � , � , 
 for some S 2 . Set � consists
of nodes in S with outgoing edges to nodes in S . Set � consists of nodes in
S with incoming edges from nodes in S. Set 
 consists of nodes in � with
outgoing edges to other nodes in �.

B. Cut-Set Bound for Relay Networks With Delays

The cut-set bound in [2] provides an upper bound on the ca-
pacity of the classical relay channel. Theorem 2 provides an
upper bound on the capacity of the relay-without-delay. The fol-
lowing upper bound on the capacity of a relay network with de-
lays is a generalization of both these upper bounds.

Recall that the classical cut-set bound has terms of the form
, where is a subset of that contains

node 1 and does not contain node . Our graphical structure al-
lows a refinement so that is replaced by ,
is replaced by , and is replaced by , where
the sets , , are as shown in Fig. 10. The introduction of
arbitrary delays complicates the expression so that the vari-
ables for some nodes have to be replaced by auxiliary variables
called . This leads to a cut-set bound with terms of the form
shown in Theorem 4. To state the theorem precisely, we begin
with some needed notation.

1) Define to be a set of subsets defined as
.

(a) Given , define ,
i.e., is the set of nodes in with outgoing edges
to nodes in .

(b) Similarly, define ,
i.e., is the set of nodes in with incoming edges
from nodes in .

(c) Define . That is,
is the set of nodes in with outgoing edges to other
nodes in .

Note that and that . For typograph-
ical ease, we drop the dependence of on and
instead write , , , since it does not result in any ambi-
guity. See Fig. 10 for an illustration.

2) Let if is on a shortest path from node 1
to node and there exists some for which , ;
otherwise, let . Define the set

for some

As we shall see, each node has a corresponding aux-
iliary random variable instead of in the expression
for the upper bound.

3) Let . This is used
to ensure that all subscripts (time indices) are positive in
Theorem 4 stated below.

We define the following shorthand notation for representing
groups of random variables for a set with reference to

:

We also use the following natural extensions to handle mul-
tiple time indices:

The following theorem provides a “single-letter” upper bound
on the capacity of the relay network with delays.

Theorem 4: The capacity of a discrete memoryless relay net-
work with delays is upper-bounded by

where the supremum is over all joint distributions of the random
variables constituting , and over all functions
such that for all . The cardinality of
any is upper-bounded by .

Remarks:
1) As we show in the examples that follow, the above bound

reduces to the classical cut-set bound and feedforward
relay network. Further, it reduces to the upper bound in
(14) for the relay-without-delay.

2) The cut-set bound in [5] for classical relay networks has
terms of the form . Note that our
bound uses the structure of the network to pare off unnec-
essary random variables by replacing with and with

and .
3) Our bound differs from the classical cut-set bound in two

ways. First, multiple random variables with different
time indices can arise for the same node. These are the
nodes in . Second, auxiliary random variables, are
assigned to some nodes instead of . These are the nodes
in . It is easy to see from the definition of that each
node in has only one variable.

To illustrate the application of Theorem 4, we consider some
examples before proceeding to the proof.

Example 9 (Classical Relay Channel): In this case ,
, and , and .

For , we obtain , , .
Hence
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Similarly, for , we obtain , ,
, and hence

As a result, the upper bound on capacity is given by

This is exactly the same as the classical cut-set upper bound
(1), although the notation is different since time indices are also
included. Note that and hence there are no auxiliary
random variables, i.e., .

Example 10 (Classical Feedforward Relay Network): The
classical feedforward relay network consists of relay nodes
that have a delay of one unit at each relay encoder. In our
notation this means that the graph has nodes with
weights for and for

and .
In this case, and , since the shortest path to any

node from node 1 is the edge from with weight . Consider
the cuts that partition into
and for . Given ,

, , and .
Hence, it follows that the capacity is upper-bounded by

Since each variable appears only with one time index, we can
rewrite this upper bound as

Note that this is the same as the classical cut-set bound [5]. In
this example, we have used only sets instead of all sets
in as in Theorem 4.

Example 11 (Relay-Without-Delay): In this case, and are
the same as for the classical relay channel discussed above and

, , and .
For , we obtain , , .

Hence

Similarly, for , we obtain , ,
, and hence

As a result, the upper bound on capacity is given by

where .
This is exactly the same as the upper bound (14) for the relay-

without-delay channel, but with different notation.

Fig. 11. Two-relay network with four cuts.

Note that in the relay-without-delay, node 2 is on the shortest
path from 1 to 3 but this is not the case in the classical relay.
In general, replaces when node is on the shortest path
to some node and there exists some such that ,

.

Example 12 (Two-Relay Network): Consider the two-relay
network in Fig. 11.

In this case, , ,
, , and .

The four elements of correspond to the four cuts
shown in Fig. 11.

For , we have , , . Hence

For , we have , , .
Hence

For , we have , , .
Hence

For , we have , , .
Hence

As a result, the upper bound on capacity is given by

where and
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In this example, note the following differences from the classical
cut-set bound.

1) Variables , corresponding to node 1 with different
time indices appear in the upper bound. Consider cut .
Note that depends on , while depends
on . Since there is an edge from node 2 to node 3,

also depends indirectly on . This creates the
need to include two different random variables (corre-
sponding to two time indices) for in the inequality
corresponding to this cut.

2) Auxiliary random variables replace for nodes that lie
on shortest paths. Node 2 is on the shortest path from 1 to
3 and 4 and hence the upper bound has instead of .

The proof of Theorem 4 requires the following lemmas.

Lemma 1: For any corresponding to a relay network
with delays

The proof of this lemma is provided in the Appendix.

Lemma 2: For any corresponding to a relay network
with delays, is a function of .

Proof: Recall that

Therefore, if then ,
which means that node does not lie on the shortest path from
1 to . As a result, , which implies that
the time index of is no more than and, hence, is
a function of , which is contained in .

Lemma 3: For any corresponding to a relay network
with delays

The main idea in the proof of this lemma is similar to that
in the proof of Lemma 1, but the proof is significantly more
cumbersome, and hence is not provided.

We are now ready to prove Theorem 4.

Proof of Theorem 4: Consider some

(41)

where holds due to Fano’s inequality, is due to the non-
negativity of conditional mutual information, and follows

from Lemma 1. Inequality holds due to the nonnegativity of
conditional mutual information and the fact that

which is easy to verify.
Next we obtain

(42)

Equality follows by the chain rule and holds by Lemma 2.
Inequalities and hold since conditioning reduces entropy.
Lemma 3 results in , and follows due to renaming.

The rest of the proof, without the cardinality bound, follows
by using a standard time-sharing argument. It is also easy to
verify that the choice to leads to positive time indices for all
variables in such a way that at least one of the variables has time
index . The cardinality bound on follows by using the same
argument as in the proof of Lemma 3.5 in [4] and by noting that

.
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VII. CONCLUSION

The paper investigated the effect of link delays on the capacity
of relay networks. Although achieving capacity requires arbi-
trarily long coding delay, we showed that finite link delays can
change the nature of cooperation in a network, and thus change
its capacity.

We first studied the relay-with-delay channel. We presented
upper and lower bounds on the capacity of the relay-with-unlim-
ited-look-ahead and the relay-without-delay. The bounds were
shown to be tight for the following.

1) Sato’s example for any .
2) Degraded and semi-deterministic relay-with-unlimited-

look-ahead.
3) Degraded and semi-deterministic relay-without-delay,

where .
4) AWGN relay-with-delay for any when

.
5) AWGN relay-with-unlimited-delay when .

In addition it is shown that the classical cut-set bound does not
hold for relay-with-delay when .

The lower bounds are achieved using different cooper-
ation strategies that depend on delay. The capacity of the
Sato relay-without-delay is achieved using instantaneous
relaying. Capacity for the degraded and semi-deterministic
relay-with-unlimited-delay is achieved by noncausal de-
code-and-forward. Capacity of the AWGN relay-without-delay
when is achieved using
amplify-and-forward. Furthermore, we showed that achieving
capacity may require a mixture of different cooperation strate-
gies. For example, to achieve the capacity of the degraded
or semi-deterministic relay-without-delay, a superposition of
instantaneous relaying and decode-and-forward is needed.

We then defined the relay network with delays, which in-
cludes the classical relay networks and the relay-with-delay as
special cases. We showed that only relative paths delays matter
to the capacity of a network. We then provided a new cut-set
upper bound that generalizes the classical cut-set bound and the
upper bound for the relay-without-delay in Theorem 2.

Many open questions remain.
1) We did not evaluate the upper bound on the relay-without-

delay (14) for the AWGN case. We know that in general it
is not maximized by Gaussian and linear relaying
functions of the form . It would be in-
teresting to find the optimal choice of the distribution on

and function for this case.
2) Fig. 7 provides an example of the potential rate increase

achievable by exploiting delay. It would be interesting to
investigate how fast in terms of increase in negative delay
can this limit be achieved.

3) Our lower bounds are developed for two extreme cases; the
relay-without-delay (where ) and the relay-with-un-
limited-look-ahead, where the relay knows its entire re-
ceived sequence noncausally. Theorem 4 provides a
general upper bound on capacity as a function of link de-
lays. It would be interesting to develop lower bounds that
are functions of . We know how to benefit from past and
present symbols, and unlimited look-ahead. How do we use

finite look-ahead (where )? Can the upper bound in
Theorem 1 be achieved for ?

4) It would be interesting to investigate the case of delay
. For example, is in general?

5) The following questions arise regarding network capacity.
(a) Theorem 3 provides a sufficient condition for two net-

works to have the same capacity. What are the neces-
sary conditions for capacity to be equal?

(b) For a given network, how does change in delay on
one of the links affect capacity? In some special cases
such as the relay-with-delay channel, Theorem 3 can
be used to answer this question.

(c) The proofs suggest that the results derived for relay
networks with delay in this paper would hold even if
the graph has cycles, provided that the length of each
cycle is strictly positive. This would be an interesting
generalization.

(d) The classical cut-set bound for networks in [5] is gen-
eralized to multiuser networks in [3]. It would be in-
teresting to generalize the new cut-set bounds to mul-
tiuser networks.

APPENDIX

MARKOV PROPERTIES

The probabilistic structure of the relay network allows the
joint distribution of the , variables corresponding to var-
ious nodes to be factorized by nodes as in (28) and the memo-
rylessness property allows further factorization by time slots as
in (29). In order to state some general forms of these factoriza-
tions, we need the following definitions. These are in addition to
the definitions of , , , , , , and defined
in Section VI.

1) Let be the minimum of the delays on paths from node
to node and define .

2) Any node that lies on a path from node 1 to node is said to
be downstream of . Let denote the set of nodes that
are strictly downstream of node . That is, is the set of
nodes that lie on some path from node 1 to node and does
not include . For , define .

3) Given , that are disjoint subsets of , a direct path
from to is any path from a node in to a node in
that does not pass through another node in . For ,
we define to be the set of nodes that lie on direct
paths from to , not including the nodes in . That
is, is the set of nodes that are strictly upstream of .

From the above definitions, it is easy to see that

(43)

and that . However, need not
be empty.

The graphical structure of the relay network with delays pro-
vides the conditional pmf of for any given .
Further, is a function of . For typographical ease,
more generally, we write instead of
in what follows. Starting at node and proceeding recursively,
the joint distribution of all variables corresponding to nodes
that are downstream of with the appropriate time indices
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can be factorized. Observe that only time indices ranging from
to of and can affect . From this,

it is easy to see that the joint distribution of and
is given by

(44)

Using the convention that , and
(or, equivalently, that ), we
can rewrite (44) as

(45)

The relay encoding function at node at time determines
based on deterministically. Hence, the pmf is if

is the value of the relay encoding function at and oth-
erwise. Using this and the directed acyclic graphical structure
it is easy to see that we can eliminate the determined by the
relay encoding functions from (45) to obtain

(46)

Note that our convention, , allows us to express the
above factorization in terms of only the variables. Akin to

, we define
. This allows us to rewrite (46) as

(47)

Above, we factorized the joint distribution of variables corre-
sponding to node and all its downstream nodes. In the same
manner, we can factorize the joint distribution of variables cor-
responding to a set of nodes (instead of a single node

) and its downstream nodes . In particular, for
corresponding to , as defined earlier

(48)

Proof: of Lemma 1: Let denote the joint pmf of

, then from (43) and (47), we obtain

(49)

where . Recall that we are
using the notation in (49).

Denote the marginal distribution of the random variables
corresponding to the nodes in by .
Using the joint distribution in (49), this marginal distribution
can be written as

(50)

where by we mean
. For , only contains nodes in , and

similarly, for , only contains nodes in .
As a result, (50) can be rewritten as

(51)

Denote the marginal pmf of the ’s corresponding to the
nodes in by . From (48)

(52)

Using (52) above, we can rewrite (51) as

(53)

Let be the marginal pmf of the ’s corresponding to
nodes in . From (48)

(54)

Now consider the joint pmf of the variables corresponding
to nodes in , denoted by . It can be written as

(55)

(56)

where (55) holds for the same reason as (51) and (56) holds due
to (54).
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From (53) and (56), it is clear that

if and . Once more recall that we defined
and hence this proves the desired Markov property

stated in Lemma 1.
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