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CMOS Image Sensor With Per-Column ΣΔ ADC
and Programmable Compressed Sensing

Yusuke Oike, Member, IEEE, and Abbas El Gamal, Fellow, IEEE

Abstract—A CMOS image sensor architecture with built-in
single-shot compressed sensing is described. The image sensor
employs a conventional 4-T pixel and per-column ΣΔ ADCs. The
compressed sensing measurements are obtained via a column
multiplexer that sequentially applies randomly selected pixel
values to the input of each ΣΔ modulator. At the end of readout,
each ADC outputs a quantized value of the average of the pixel
values applied to its input. The image is recovered from the
random linear measurements off-chip using numerical optimiza-
tion algorithms. To demonstrate this architecture, a 256x256 pixel
CMOS image sensor is fabricated in 0.15 µm CIS process. The
sensor can operate in compressed sensing mode with compression
ratio 1/4, 1/8, or 1/16 at 480, 960, or 1920 fps, respectively, or in
normal capture mode with no compressed sensing at a maximum
frame rate of 120 fps. Measurement results demonstrate capture
in compressed sensing mode at roughly the same readout noise of
351 µV and power consumption of 96.2 mW of normal capture
at 120 fps. This performance is achieved with only 1.8% die area
overhead. Image reconstruction shows modest quality loss relative
to normal capture and significantly higher image quality than
downsampling.

Index Terms— ADC,CMOS image sensor, compressed/com-
pressive sensing.

I. INTRODUCTION

C MOS image sensor resolution and frame rate have been
steadily increasing in recent years [1]–[4]. Since most of

these sensors are used in mobile devices, power consumption
is a primary concern. Studies have shown that the dominant
component of power consumption in CMOS image sensors
with column-parallel ADCs is A/D conversion followed by
output readout [3]–[5]. As such, power consumption in CMOS
image sensors increases at least linearly in resolution and
frame rate. On-chip image compression can help to reduce the
readout rate [6]–[8], hence the power consumption, but does
not reduce the A/D conversion power consumption, since it
is performed after all pixel values have been converted to the
digital domain.
Compressed sensing (CS) [9]–[11] is a recently developed

sampling theory that holds the promise to significantly reduce
the number of captured measurements, hence the number of
A/D conversions performed, without adversely affecting signal
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recoverability. The basic premise of this new theory is that if
a signal can be efficiently represented using only a few coeffi-
cients in a transform domain, such as wavelet transform, it can
be recovered from a number of random linear measurements
that is much smaller than the number of samples dictated by
the Nyquist rate. Since its inception a decade ago, there have
been significant efforts in applying CS to different areas in
data compression, error correcting codes, inverse problems,
and analog-to-information acquisition. The most successful
of these applications to date has been Magnetic Resonance
Imaging (MRI) [12] in which CS is used to significantly reduce
acquisition time—a crucial requirement for scanning children.
Although the first attempt at applying CS was in visible range
image acquisition [13]–[16], it has yet to be applied to any
commercial image sensors. This is because previous imple-
mentations of compressed sensing in imaging [17]–[19] have
suffered from several limitations, including limited scalability,
the inability to perform single-shot imaging, and low SNR.
In this paper, we describe a CMOS image sensor with

integrated compressed sensing that addresses the shortcomings
of previous CS implementations. Our sensor architecture [20]
is based on the idea that if multiple pixel values are applied
sequentially to the input of a modulator and then the entire
output sequence is decimated, the output of the ADC represents
a quantized version of the sum (average) of the applied pixel
values. Our main contribution is to show that this idea can be
implemented in a CMOS image sensor that employs a conven-
tional 4-T pixel design and per-column ADC with very small
chip area overhead, allowing for single-shot imaging with no
SNR degradation due to signal readout or A/D conversion
relative to standard sensor readout. Maintaining such high SNR
is important because it helps to reduce the degradation in image
quality incurred by image compression. To allow for imaging
of different types of scenes, the compression ratio (CR), that
is, the ratio of the number of captured samples to the total
number of pixels, can be programmed to 1 (no compressed
sensing), 1/4, 1/8, or 1/16. Alternatively, the sensor frame rate
can be proportionally boosted by a factor of 4, 8, or 16 with
power consumption close to that for normal capture with no
compression.
The rest of the paper is organized as follows. In the following

section we provide a brief background on compressed sensing
and previous CS implementations in imaging. In Section III,
we present the basic principle on which our implementation is
based. In Section IV, we describe the architecture and operation
of our sensor. In Section V, we describe a 256 256 pixel pro-
totype image sensor fabricated in 0.15 m CMOS technology
and present measured results.

0018-9200/$31.00 © 2012 IEEE
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II. BACKGROUND AND PREVIOUS WORK

The Shannon–Nyquist theorem states that a bandlimited
signal can be recovered from a sequence of samples if the
sampling rate is higher than twice the bandwidth of the original
signal. This is the principle on which all signal processing
acquisition systems are based today. In many applications,
however, the Nyquist sampling rate is much higher than the
signal “information rate.” Conventional digital image com-
pression [6]–[8] cannot solve the high sampling rate problem
because it is performed after sampling and A/D conversion
are performed, hence can only reduce storage and transmis-
sion rates. In [21], an analog on-chip compression using a
two-dimensional basis transform is reported. Although the
variable bit resolution of this technique reduces the total A/D
conversion power consumption, the implementation requires
precise analog circuits and does not reduce the number of A/D
conversions needed since the number of transform coefficients
is the same as the number of pixels in the image sensor.
CS asserts that signals and images can be recovered from

fewer samples than dictated by the Shannon-Nyquist theorem if
they are sparse, that is, if their information rate is lower than the
Nyquist rate. In the following we provide a brief introduction to
CS. For a more detailed introduction, see for example [11].
Assume a discrete-time signal

that may represent the pixel values of an image. Let
, where are -di-

mensional orthonormal basis vectors, be a transform matrix
such as for a wavelet transform. Using this transform matrix,
the signal can be represented as and there
is a one-to-one correspondence between and its transform

. The signal is said to be -sparse
if it has only non-zero coefficients. This is the property
exploited in transform coding, such as JPEG and MPEG, in
which only the largest coefficients are kept and then losslessly
compressed. However, in transform coding, we first acquire
all the samples , quantize them, compute all the transform
coefficients , and keep only the largest ones and their
locations so that the signal can be reconstructed.
CS provides a much better way to exploit sparsity [9]–[11].

Instead of acquiring all samples, we acquire a much smaller
number of linear measurements , ,
using an measurement matrix , that
is, we acquire

However, since , this system of linear equations is highly
underdetermined. It can be shown that if is incoherentwith ,
that is, , , is small (akin
to the well-known time-frequency duality in Fourier transform),
then is recoverable. The first key contribution of CS theory is
to show that a randomly generated matrix is incoherent with
with high probability—in fact even a random or binary ma-
trix can be used. Note that in addition to reducing the number of
samples acquired, CS has the advantage of being non-adaptive
(much like uniform sampling)—the same measurement matrix
can be used as long as the signal sparsity is less than .

The second contribution of CS theory is to show that can be
recovered with high probability using only mea-
surements for some constant by solving the -norm mini-
mization problem:

This problem can be solved efficiently using linear program-
ming (also referred to as basic pursuit). The basic pursuit algo-
rithm can be extended to the more realistic noisy measurement
case, , where is the noise vector, by replacing
the above constraint with one that requires to be close to
in the -norm sense. There is still a great deal of ongoing re-
search on finding computationally efficient recovery algorithms
for real-world signals; see for example [22] for a survey of re-
covery algorithms.
In the following, we briefly review previous different imple-

mentations of CS in image sensors and discuss the limitations
that have precluded their successful commercialization.

A. Previous Work

To implement CS in an image sensor, one needs to find a way
to read out not the pixel values themselves but a set of random
linear combinations of pixel values. In previous work, this
random linear sampling was implemented either in the optical
domain [13]–[16] or on-chip in the circuit domain [17]–[19].
Optical domain implementations include [15] and [16]. In

[15], the random measurement matrix is implemented using a
random phase mask placed at the image’s Fourier plane as de-
picted in Fig. 1(a). The modulated intensity image is then sam-
pled using a low resolution imager to obtain the linear measure-
ment vector. This idea has been demonstrated in IR imaging in
which a significant part of the system cost is due to the focal
plane array pixel resolution. This implementation uses a con-
ventional low resolution imager and the image is captured in a
single shot. However, it suffers from several limitations, espe-
cially in visible range imaging; (i) the optical mask degrades
sensitivity, (ii) precise alignment is needed, and (iii) it is dif-
ficult to scale the system resolution. The second optical imple-
mentation of CS in imaging is the celebrated single pixel camera
in [16] (see Fig. 1(b)). In this approach, the measurements are
acquired sequentially using a single photodiode. The incident
light from the scene is reflected off a digital micromirror device
(DMD) and the reflected light is collected by a single photo-
diode. Each mirror can be independently oriented either towards
the photodiode (corresponding to a 1) or away from it (corre-
sponding to a 0). To acquire a measurement, a randomly gener-
ated 0/1 vector is used to set the mirror orientation. The output
of the pixel represents the sum of the reflected light from the
mirrors oriented towards the photodetector. This CS implemen-
tation, however, is attractive only when the cost of the photode-
tector is the dominant component of the total system cost, which
is not the case in visible range imaging. It also suffers from sev-
eral limitations; (i) the image is captured using multiple shots,
which makes it unsuited for imaging a moving target, (ii) it is
difficult to scale the system resolution, and (iii) reflections from
the mirrors result in loss of sensitivity. In summary, existing op-
tical domain implementation of CS are not well-suited to main-
stream visible range imaging.
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Fig. 1. Previous CS implementations: (a) camera with random phase shift mask [15], (b) single pixel camera [16], (c) CMOS image sensor with analog VMM
[17], (d) CMOS image sensor with in-pixel random sequencer [18].

TABLE I
COMPARISON OF PREVIOUS CS IMPLEMENTATIONS

On-chip circuit domain implementation of CS avoid the
loss of light and alignment issues of optical domain imple-
mentations. In [17], the measurements are captured one pixel
block at a time using separable transform matrices. The first
computation is performed at the focal plane using an array
of computational pixels and column current summing as de-
picted in Fig. 1(c). The second computation is performed in
an analog vector matrix multiplier (VMM) implemented using
floating-gate transistors. This CS implementation requires mul-
tiple shot image capture, is difficult to scale to large pixel ar-
rays, and suffers from low SNR due to the use of a passive pixel
sensor and analog summing operations. In [18], [19], CS is im-
plemented by shifting a random digital pattern representing a

measurement matrix via a shift register distributed over
the pixel array (see Fig. 1(d)). The currents from the pixels
with the pattern in the same column are summed over one
line while the currents from the pixels with the pattern are
summed over a second column line. The total weighted sum is

then performed again in analog at the chip level. This imple-
mentation requires multiple shot image capture, is not scalable
due to the large pixel size, and suffers from low SNR due to
pixel design and analog summation.
Table I summarizes and compares these previous CS imple-

mentations as well as our implementation. As we will see, the
sensor architecture described in this paper addresses the lim-
itations of the aforementioned approaches. It employs a stan-
dard 4-T active pixel and achieves single shot imaging with no
SNR degradation and with very small die area overhead. We
will also see that power consumption is reduced by almost the
same factor as the compression ratio.

III. USING ADC TO OBTAIN LINEAR MEASUREMENTS

Our image sensor implementation of CS uses a random binary
measurement matrix. The main idea is to simultaneously per-
form summation (averaging) and quantization of the randomly
selected pixel values via a ADC. To obtain a measurement,
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Fig. 2. (a) Incremental AD operation, (b) averaging and quantizing pixel values using ADC.

the selected pixel values are applied sequentially to the input of
the modulator as depicted in Fig. 2(b). The output from the mod-
ulator is then decimated using a counter to obtain a digital rep-
resentation of the average pixel values. Fig. 2 shows simulation
results for an ideal first-order ADC (with infinite amplifier
gain, no temporal noise, etc.) with 256 sampling cycles corre-
sponding to 8-bit quantization. Fig. 2(a) shows the output of
the modulator and its decimated value for a constant input
voltage mV and Fig. 2(b) shows the output when
a different input is applied to the ADC input in each
cycle such that the average of these inputs is
equal to , i.e.,

Note that the final internal integrator voltages and
and their respective decimated value and
are equal in both cases, which shows that the ADC per-

forms simultaneous averaging and quantization when multiple
input values are sequentially applied to it. In Section V, we
present measured DNL and INL results from a fabricated
with multiple pixel values applied to its input.
Fig. 3 illustrates the implementation of random linear sam-

pling for a 4 4 pixel image sensor with per-column ADC
and compression ration , i.e., capturing four random
linear samples from the 16 pixels, using a 4 16 measurement
matrix . As shown in the figure, the four samples are acquired
simultaneously using a multiplexer controlled by the column
values of the matrix. The pixel values are sequentially applied
to the input of the multiplexer in a raster scan fashion. In clock

cycle , the -th pixel value is applied to ADC
if , and a reference voltage is applied

to it if . The modulators may continue sampling after
all pixel values have been applied to obtain a higher resolution
quantized value of each sample average.
Performing random sampling on an entire pixel array, how-

ever, is not scalable both in die size and in the computational
complexity of image recovery. Hence, in our implementation,
the pixel array is partitioned into blocks and sampling is per-
formed on each block using the same measurement matrix as
detailed in the next section. An important question that arises
here is how large does the pixel block needs to be in order to
achieve high compression ratio while maintaining good image
quality. To answer this question, we varied the pixel block sizes
from 8 8 to 64 64 and performed simulations with different
types of images. Fig. 4 plots the PSNR of the reconstructed
image versus the pixel block size for different compression ra-
tios. In this simulation, the A/D conversion resolution was set
to 16 bits. The number of pixels averaged was half the number
of pixels in the block. For example, for the 16 16 pixel block,
128 pixels were averaged. Note that PSNR degrades slowly with
block size in this range. As such, we decided to use a 16 16
block size in our implementation.
A second important parameter to choose is the ADC bit

resolution. We again performed simulations to compare image
quality as measured by PSNR as a function of ADC resolution.
In this simulation, the block size was set to 16 16 and the
number of averaged pixel values was 128. Fig. 5, shows that
PSNR improves markedly when the resolution is increased
from 8 to 11 bits, but no noticeable improvement is observed
beyond 12 bits. Based on these results, we decided on 12-bit
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Fig. 3. Random linear sampling performed at per-column ADC.

Fig. 4. Recovered image quality measured by PSNR as a function of pixel
block size.

Fig. 5. Recovered image quality measured by PSNR as a function of AD bit
resolution.

ADC resolution. The implementation of our ADC is detailed in
the next section.

Fig. 6. Recovered image quality measured by PSNR as a function of the
number of averaged pixels per sample.

We also performed simulations to decide on the number of
pixels to be averaged in each sample, that is, the density of ones
in the measurement matrix. This is an important parameter be-
cause if has too few or too many ones, the needed incoher-
ence with a transform matrix is lost resulting in poor image re-
covery. Fig. 6 plots the PSNR of the reconstructed image versus
the number of averaged pixel values. In this simulation, the
bock size and the ADC resolution were set at 16 16 pixels
and 16 bits, respectively. Based on these simulation results and
implementation considerations to be discussed in the next sec-
tion, we decided on having 64 pixel values averaged in each
measurement.
Remark: The simulated PSNR values in Figs. 4–6 are also

obtained under ideal circuit model.

IV. CHIP ARCHITECTURE AND DETAILED OPERATION

Fig. 7 depicts the architecture of our CMOS image sensor. It
comprises a 256 256 pixel array with row block/pixel selec-
tors, column block selectors, compressed sensing multiplexer
(CS-MUX) controlled by a pseudo-random pattern generator
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Fig. 7. Image sensor architecture configured for compression ratio .

Fig. 8. Example matrix ( ) and CS-MUX schematics configured for readout of random linear sample.

(LFBSRs), column-parallel ADCs with decimation filters,
and a column output scanner. The pixel array is segmented into
16 16 pixel blocks and CS is performed over each block using

the same 256 random binary CS matrix specified by
the 16-bit one-hot code CSEL[0:15] and the 64-bit bit stream
BS[1:m], where 64, 32, or 16 is the number of random
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Fig. 9. Readout timing diagram for row block at compression ratio
.

linear samples obtained from each block depending on the se-
lected CR. Alternatively, conventional sensor operation can be
performed by bypassing the CS-MUX and directly reading out
the pixel values themselves. The pixel comprises a pinned pho-
todiode and 4 transistors. The transfer and reset gates in each
pixel are controlled by and , respectively, in a
per-block fashion, while the select gate is controlled by
in a per-row-fashion.
Chip readout operation is described with the help of Figs. 8

and 9 for using the example block CS matrix in
Fig. 8. As shown in the top three waveforms in Fig. 9, readout is
performed simultaneously for each 4-block group ,
, , within block row

for . During this readout, consecutive
ADCs are dedicated to each of the four blocks (for ,
eight blocks are read out at the same time and 32 ADCs are
dedicated to each block, etc.). Digital correlated double sam-
pling is performed by first acquiring random linear samples of
the pixel reset values according to and then acquiring the
corresponding random linear samples of the pixel signal values
using the samematrix. The operation in each phase is performed
one pixel row at a time (see bottom parts of Figs. 8 and 9). For
each row , and simultaneously for the 4-block
group, 8 out of the 16 pixel values are sequentially selected
by each column selector. This selection is performed using a
different shift of the 16-bit one-hot code CSEL to control each
of the four column selectors. The purpose of this selection step
is to reduce the oversampling ratio and the load on each pixel
column output. The selected pixel value at the output of each
column selector is then either applied to each of four ADC in-
puts or not via a signal selector controlled by the random
bit stream BS. When a pixel is not selected, a reference voltage
is applied to . The same procedure is repeated for each

row of pixels within the selected 4-block group until all random
linear samples from these blocks have been read out. The entire
readout process is then repeated for the other 4-block groups

Fig. 10. Details of column circuit top-bottom split configured for compression
ratio of 1/4.

Fig. 11. Timing diagram of interleaved and overlapped pixel access.

within the block row. The next block row is then read out in the
samemanner and the process is repeated until all 64 256 linear
samples of the current frame are acquired (for ). The
segmentation of the CS-MUX can be programmed to implement
other compression ratios. For example, to achieve ,
eight blocks are chosen at a time and 32 ADCs are dedicated
to each block. Note that in this CS operation, the random linear
measurements for each frame are acquired after only one ex-
posure period. This single-shot imaging makes it possible to
capture a moving target with CS. The motion artifacts caused
by the per-block electronic shutter is no more severe than that
for a conventional CMOS image sensor with a rolling shutter.
The single-shot operation also makes it possible to employ a
global-shutter such as [23] to completely avoid motion artifacts.
Details of the column circuit top-bottom split are shown in

Fig. 10. Two vertical signal lines are alternately connected to
even and odd pixel rows. The pixel readout operation initiated
by is interleaved so that the pixel readout settling time
overlaps with the A/D conversion of the previous pixel row as
shown in Fig. 11.
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Fig. 12. Circuit schematic and timing diagram of the first-order algorithmic ADC.

Fig. 12 shows the circuit diagram and operation of the per-
column first-order algorithmic ADC [24]. The ADC oper-
ates in incremental mode in which the modulator and decima-
tion filter are reset before each A/D conversion, hence it does
not suffer from the problem of idle tones [25], [26]. The
modulator samples the ADI signal generated by the CS-MUX
and outputs a 128-bit stream corresponding to a 7-bit coarse
quantization of the average of the selected pixel values. The
residual voltage of the integrator is then fed back to the input
for an additional 32-bit stream corresponding to 5-bit fine quan-
tization. The decimation filter is implemented using an 8-bit
and a 6-bit up/down ripple counters with digital CDS capa-
bility. In our prototype implementation, the first-order modu-
lator is based on a circuit topology with an improved virtual
ground for offset cancellation [4]. The integrator amplifier is a
cascoded common-source amplifier and achieves 73 dB gain at
room temperature.
Remark: Although the CS image sensor architecture we de-

scribed is for monochromatic imaging, it can be readily ex-
tended to color imaging. Using a color filter array (CFA) such as
a Bayer filter, the CS-MUX is used to separate the color chan-
nels, and then random linear measurements are acquired from
each color channel using a different set of column ADCs as de-

scribed above. Each color channel is then separately recovered
off-chip from its random linear measurements.

V. PROTOTYPE AND EXPERIMENTAL RESULTS

To demonstrate our architecture, we fabricated a prototype
image sensor. Fig. 13 depicts the prototype chip microphoto-
graph and Table II lists the main chip characteristics. As can
be seen, the column readout circuits are split between the top
and the bottom of the array to allow for a wider ADC pitch.
The image sensor is fabricated in a 1P6M 0.15 m CMOS
process with MIM capacitors and pinned photodiodes in a
2.9 3.5 mm die. The pixel pitch is 5.5 m and the column
selectors/ADC pitch is 11 m. The CS overhead, that is, the
CS-MUX and the random pattern generators, occupy only 1.8%
of the total the chip area.
The prototype has been fully tested and characterized.

Table III summarizes the chip characteristics. The measured
readout noise is 368 in the normal mode at 120 fps
with conversion gain of 20 - and saturation level of
25,000 e-. In CS mode with , the readout noise
is 351 . The ADC noise measured at the CS reference
voltage is 339 . Fig. 14 shows measured
DNL and INL results for a single per-column ADC. The mea-
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Fig. 13. Chip microphotograph of the prototype image sensor.

TABLE II
CHIP SPECIFICATIONS

Fig. 14. Measured ADC linearity. (a) DNL. (b) INL.

sured 12 b DNL is within to LSB and the INL
is . The DNL is higher than expected because of the
gain error during the fine A/D conversion phase. The feedback
signal from the residual voltage of the integrator is multiplied
by Ci/Cs. This gain is set by connecting the capacitors Cs and
Ci in the opposite way of the integration phase. The measured
column FPN rms at dark level is 0.57 LSB.

TABLE III
CHIP CHARACTERISTICS

Fig. 15. Captured and reconstructed images: (a) target object, (b) packaged
prototype chip, (c) sensor output at , (d) reconstructed image.

Fig. 16. Sample images captured in: (a) normal mode at 120 fps, (b) com-
pressed sensing at and 480 fps, (c) downsampling at 1/4 ratio.

Fig. 15 depicts an example of a captured image and its re-
construction at . The captured image (Fig. 15(c)) has
128 128measurements while the recovered image (Fig. 15(d))
has 256 256 pixels. The image is recovered using a block-
based algorithm involving a two-step iterative curvelet thresh-
olding [27], [28] running on a PC. Fig. 16 shows three close-ups
that compare: (a) the image captured using the normal mode
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Fig. 17. Sample images captured in: (a) normal mode at 120 fps, (b) com-
pressed sensing at and 960 fps, (c) downsampling at 1/8 ratio.

Fig. 18. Sample images captured in: (a) normal mode, (b)–(d) compressed
sensing at , 1/8 and 1/16, respectively, (e)–(g) downsampling at
1/4, 1/8, and 1/16 ratio, respectively.

with no compressed sensing, (b) the image captured with com-
pressed sensing at , and (c) an image captured by con-
ventional downsampling at 1/4 ratio. Note that the image with
compressed sensing has more detailed texture than the down-
sampled image and is very close to the image with no compres-
sion, which is captured at 1/4th the frame rate of the compressed
sensing image.
Fig. 17 shows another sample image taken at

with comparisons to the same image captured using the normal
mode and via downsampling at 1/8 ratio. Fig. 18 shows a third
captured image using different compression ratios. As can be
seen, image quality gracefully degrades as compression ratio
is decreased. However, in all cases, the compressed sensing
image contains better texture details than its downsampled
image counterpart.
Fig. 19 compares the energy consumption per frame, Struc-

tural Similarity (SSIM) [29], and PSNR for images captured at
different compression ratios to the normal capture image. Note
that the reduction in energy consumption per frame is almost
the same as the compression ratio, with only 3.4% increase in
overall power consumption using relative to normal

Fig. 19. Energy consumption per frame, SSIM, and PSNR versus compression
ratio CR.

capture. Also, note that both SSIM and PSNR drop only mar-
ginally with the compression ratio.

VI. CONCLUSION

We presented the first image sensor architecture with
single-shot compressed sensing. Per-block compressed sensing
is programmably implemented simultaneously with A/D con-
version via per-column ADC and a column multiplexer
for random pixel selections. The architecture employs an
off-the-shelf pixel design and can be implemented with very
small area overhead. To demonstrate this architecture, we de-
signed and fabricated a 256 256 image sensor in 0.15 m CIS
process. Measured results show no loss in SNR or sensitivity
relative to normal capture and close to linear reduction in
energy consumption per frame with CS compression ratio. We
also showed that image quality degrades gracefully with com-
pression ratio and is significantly higher than downsampling
with the same readout rate.
Much work remains to be done to demonstrate the usefulness

of compressed sensing in visible range image sensors. Current
CS recovery algorithms do not perform uniformly well over
different types of images and require significant computation
time, making them unsuited for mobile system implementation.
We demonstrated significant reduction in power consumption
and/or increase in frame rate using our architecture, but with in-
crease in off-chip image recovery complexity.
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