2354

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014

GridSpice: A Distributed Simulation Platform
for the Smart Grid

Kyle Anderson, Jimmy Du, Amit Narayan, and Abbas El Gamal, Fellow, IEEE

Abstract—This paper describes GridSpice, a scalable open-
source simulation framework for modeling, designing, and plan-
ning of the smart grid. GridSpice seamlessly integrates existing
electric power simulation tools to enable modeling of large electric
networks that blur the boundaries between generation, transmis-
sion, distribution, and markets. This is achieved via a cloud-based
architecture that allows for parallelizing large simulation jobs
across many virtual machines using a pay-as-you-go model. Grid-
Spice simulations can be managed through a Representational
State Transfer (REST) application programming interface (API),
or through a Python library, allowing users to run simulations
programmatically and interface with disparate data inputs,
energy management systems (EMS), distribution management
systems (DMS), and postprocessing tools. These capabilities make
GridSpice an ideal tool for the development and testing of
new grid control and optimization algorithms. GridSpice also
provides an easy-to-use browser-based interface to allow novice
users to begin without any setup or configuration on their
local PC. A first implementation of the GridSpice framework
integrates Gridlab-D and MATPOWER as simulation tools, and
has been used for projects including optimizing the placement of
distributed generation and developing optimal dispatch schedules
for flexible loads. The GridSpice framework and Gridlab-D are
freely available in open-source under the BSD license.

Index Terms—Electric vehicles, multiagent systems, power
system simulation.

I. INTRODUCTION

HE ELECTRIC power grid, comprising utility compa-

nies, power system operators, market players, and other
agents, is undergoing rapid change. Centralized generation
is being complemented with renewable energy sources and
storage systems. A prevalence of electric vehicles, unexpected
consumer reaction to demand response programs, and dis-
tributed energy resources (DER) all add further stresses on
an aging grid architecture. To deal with these changes, grid
operators should become more proactive about replacing out-
dated components with more technologically advanced ones,

Manuscript received September 09, 2013; revised February 27, 2014 and
May 03, 2014; accepted May 31, 2014. Date of publication June 30, 2014; date
of current version November 04, 2014. This work was supported in part by the
TomKat Center for Sustainable Energy, in part by Cisco Systems through the
Energy and Environment Affiliate Program, in part by the Stanford Graduate
Fellowship (SGF), and in part by the Stanford Electrical Engineering Research
Experience for Undergraduates (REU) Program. Paper no. TII-13-0737.

K. Anderson, J. Du, and A. E. Gamal are with the Department of
Electrical Engineering, Stanford University, Stanford, CA 94305 USA
(e-mail: kyle.anderson@stanford.edu; jimmydu@stanford.edu; abbas@ee.
stanford.edu).

A. Narayan is with the AutoGrid, Redwood Shores, CA 94065 USA (e-mail:
amit@auto-grid.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/T11.2014.2332115

adding sensing devices, such as smart meters, and using
sophisticated distributed control systems to accommodate
these changes. There is a high cost associated with reforming
an asset such as the electric power system, a cost measured
not only in dollars but also in terms of power disruption
due to unintended consequences of upgrading large portions
of the grid. These high costs can be somewhat ameliorated
by simulation—modeling the grid as accurately as possible
and using these models to develop and implement optimized
control systems. This task is becoming more difficult, however,
due to the increasing interdependencies among generation,
transmission, distribution, and end-use loads. Existing elec-
tric power simulators provide well-proven point tools for
transmission networks, e.g., Siemens PSS/E, distribution net-
works, e.g., Gridlab-D [3], OpenDSS [12], or general optimal
power flow, e.g., MATPOWER [5]. Other simulation tools
designed to study transients [14] are also important for both
transmission and distribution system analysis, but are often
designed as standalone solvers without detailed models of
smart grid elements or models of customer behavior. Several
frameworks have been proposed for tightly coupled cosimu-
lation of communication systems and transmission networks
based on the high-level architecture (HLA) and system-in-
the-loop (SITL) [23] standards, but these do not support the
cosimulation of transmission and distribution systems.

The integrated retail and wholesale (IRW) project at Iowa
State University [13] provides a cosimulation testbed, but does
not directly support parallelizing simulation jobs across a large
cluster and does not provide a generic interface for incor-
porating new simulation tools or interfacing with disparate
data sources. Their testbed runs on standalone workstations,
limiting the scope of smart grid scenarios it can model.

In this paper, which provides a more detailed description
of the work presented in [2], we describe GridSpice, a cloud-
based simulation platform that addresses the aforementioned
limitations of existing simulation systems. GridSpice provides
a flexible framework that runs industry standard simulation
tools as separate but synchronized processes on a cluster.
Each subsystem within the network model runs in a simulator
designed for that purpose while GridSpice synchronizes the
boundary state of these loosely coupled processes. Since
GridSpice can run each of these processes on a separate node
of a cluster, it is possible to simulate a transmission network
with hundreds of connected generators and distribution net-
works on a sufficiently large cluster.

In addition to partitioning large interdependent networks
to run on a cluster, GridSpice also makes it easy to run

1551-3203 (© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

ANDERSON et al.: GRIDSPICE: A DISTRIBUTED SIMULATION PLATFORM FOR THE SMART GRID

embarrassingly parallel tasks such as iterative grid analysis.
Users can quickly evaluate the effects of many potential
changes to the grid and compare the results. An example use
case would be determining the ideal locations to add storage
elements on the grid (i.e., the user evaluates each potential
location independently in parallel).

The GridSpice framework allows users to edit models and
control simulations through a Secure Representational State
Transfer (REST) application programming interface (API).
Since the REST interface is based on hypertext transfer pro-
tocol (HTTP) requests, users may control the system through
the language of their choice and automatically synchronize
their models with energy management systems (EMS) and dis-
tribution management systems (DMS). For user convenience,
the client side of this REST API has been implemented in
Python as a scripting tool to perform tasks such as iterative
grid architecture optimization.

GridSpice eases adoption into existing work flows by pro-
viding an easy-to-use browser-based graphical user interface
(GUI) with features including a geographical information sys-
tem (GIS) editor, project explorer, object editor, and a wizard
for importing projects from other systems. Since the GUI runs
in the browser, it is platform-independent and does not require
any setup on a user’s workstation. New users can become
familiar with the features of the system through the GUI before
using the scripting interface, and advanced users can use the
GUI to complement the scripting interface when they wish to
perform visual checks on their models. This makes GridSpice
ideal for both academic courses and professional use.

This paper is organized as follows. In Section II, we
provide an overview of how we split a simulation into a
set of loosely coupled processes running on a cluster with
synchronized boundary state. In Section III, we provide some
simple pseudocode examples of how to perform a simulation
using GridSpice. In Section IV, we compare the GridSpice
framework to existing cosimulation frameworks and analyze
its performance. In Section V, we describe the software system
implementation.

II. SIMULATION CLUSTERS

GridSpice simulations run on a dynamically sized cluster
consisting of a master node and worker nodes. The master
node accepts simulation requests from the front-end server as
described in Section V, and starts a supervisor process for each
new simulation. The supervisor process is responsible for start-
ing the subsimulations, which run on the worker nodes, and
keeping the shared state synchronized. The supervisor process
adds these tasks to an Oracle GridEngine queue that assigns
the task to the worker node with the least load. Each worker
node has a configurable number of slots, each of which can run
one task. Fig. 1 depicts a cluster in which there are two simula-
tions running. Each simulation has a single supervisor process.
The first worker node is currently running four tasks, the sec-
ond worker node is running two tasks, and the last worker node
is running six tasks. The next time either simulation supervisor
adds a new task, it is scheduled on the second worker node
since it is the least loaded. The master node continuously
reads the central processing unit (CPU) utilization on each

2355

Front end
(See Fig. 7)

Schedule new

Y Supervisor 1 Supervisor 2
Grid engine ' (Repast (Repast)

N

Simulation
communication
See Fig.

(See Fig-2), '\

Worker node Worker node Worker node

112 3 4|5|6[7|8 11213[4|5|6[7|8 1421314546178

Fig. 1. Simulation cluster.

worker node. If all worker nodes reach their CPU bottleneck,
the master node automatically starts up a new worker node.
Conversely, if the master node detects worker nodes with no
load, it shuts them down to conserve cloud resources.

The supervisor process creates a task for each network
subsimulation. Each GridSpice simulation consists of
exactly one transmission network, zero or more distribution
networks, and zero or more generators. However, users can
run distribution-only simulations by creating a single-bus
transmission network with the distribution network(s) attached
to it. Similarly, users can run transmission-only simulations
by fixing the loads and the generator parameters for each
bus instead of attaching a distribution network. Each network
runs in a subsimulator as a remote task.

In addition to attaching remote subsimulators to each bus,
the user can define a local agent within the supervisor process
as shown in Fig. 2. This is useful when the bus uses simple
logic such as reading from a data file or a given probability
distribution. For example, a user may choose to simulate the
NYISO 2935-bus transmission network [5] with 200 attached
distribution simulation instances, 20 attached generation simu-
lation instances, and 2715 local agents that define the behavior
of the buses that do not have an attached simulation instance.

Once the remote tasks have started, the supervisor process
uses the RePast Simphony [4] to maintain a global simulation
clock and synchronize the boundary states between these
subsimulations, as shown in Fig. 2. The supervisor maintains a
proxy for each worker task, and keeps track of which worker
tasks need update messages when a dependent worker task
changes its state.

Each remote task runs a simulation tool within a wrapper to
synchronize any shared state with its proxy in the supervisor.
The proxy defines a list of input and output shared variables
using Java annotations. The user can add a new dependency by
adding the variable in the proxy class along with the appropri-
ate input/output annotation. After adding a new dependency,

2356

Supervisor
(Repast symphony)

Distribution Distribution Generation
TSO proxy
(Local) proxy proxy
"N n [A F
= (<)
o
= g g g |8
of 3l F Es. [E°
o3 « 8 al® o g |8
o o3 & 0 S= = 2
il Llg 0O23 — =3
>] e z |2
= 8 5 |3
N L A n
orker task 1 orker task 2 orker task 3
TSO Generation
(MATPOWER) (Gridlab-D)

Fig. 2. Simulation consisting of three remote tasks and one local task.

the wrapper must be adjusted to send or receive the new
variable from the simulator.

The GridSpice framework uses Gridlab-D for distribution
and generation simulation, which supports three-phase unbal-
anced power flow and provides numerous models for smart
grid hardware, customer behavior, and generators. The agent
acting as the system operator runs a lightweight transmission
and economic dispatch package based on MATPOWER. In its
original form, MATPOWER provides one-shot solutions of the
optimal power flow problem. We have modified MATPOWER
to rerun at each time step, resetting the ramping constraints
for the next time step based on the operating points from
the previous time step. This does not guarantee a globally
optimal dispatch schedule over time, and we plan to improve
this scheme using dynamic programming in a future release
of GridSpice.

At each time step, the system operator task publishes the
locational marginal price, voltage magnitude, and voltage
angle for each load bus on the transmission network as well
as the power injection, voltage magnitude, and voltage angle
for each generation bus. The system operator task listens to
updates of P and () from each load bus as well as updates
of the costs and constraints from each generator. Analogously,
the distribution tasks publish their P and () values at each
time step, and listen to updates of their voltage magnitude,
voltage angle, and LMP. The generation task publishes its
costs and constraints as well as receive notifications about
dispatch schedules, voltage magnitude, and voltage angle on
the transmission grid.

The GridSpice supervisor is an agent-based discrete event
simulator in which each subsimulation task is an agent. Each
time a task updates its state, it decides the time tpext > tmin
at which it needs to update again. However, the task has the
opportunity to update before ¢,y but after ¢,,;, if any of its
dependent inputs change, as illustrated in Fig. 3. For example,
a distribution network may recompute P and () when the
parent LMP changes. However, it may not recompute its P
and @ at time steps more granular than f.;,. Thus, tnin

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014

Initialize I
| !

Run distribution Run TSO Run generation
(if inputs change) (if inputs change) (if inputs change)

=
[72)
el
2
< ~|3
2\ O g |2
% =
T
]

| Anything changed? I

X %s

————————— t=temin(ey) | | t=tttye ————

Fig. 3. Method for determining how to advance global simulation clock.

should be set to the minimum granularity of all dynamic
control systems used in the models. The ramifications of
adjusting t,,i,, are discussed in greater detail in Section I'V. The
current simulators integrated within GridSpice are intended for
analysis at intervals greater than one second.

GridSpice uses a pessimistic approach to advancing the
simulation. The internal clock for each task does not advance
to the next time step until the global clock maintained in the
supervisor process has advanced. This approach helps make
the GridSpice platform simulator-agnostic because simulators
are not required to implement check pointing or rollback.

III. EXAMPLES AND APPLICATIONS

We first describe two simple examples that utilize the
features of GridSpice and can serve as starting points for more-
involved scenarios. The first example shows how GridSpice’s
parallel architecture can be used to perform iterative heuristic
analysis of solar panel placement. The second example high-
lights the cosimulation capabilities of GridSpice by finding the
optimal placement of solar panels across multiple distribution
networks where the placement may impact locational marginal
prices on the network. We then briefly describe several more
involved applications that have used GridSpice.

A. Example 1 (Solar Panel Placement)

This example shows how to use GridSpice to place 200 new
solar panels in a distribution network using a heuristic. The
transmission network is modeled as a single bus. All customers
are subject to the same locational marginal prices, hence
the objective is based solely on network losses, operating
violations, and the peak-shaving behavior of solar output.
The pseudocode for determining a placement is shown in
Algorithm 1. In each round, the algorithm places a single solar
panel by randomly selecting 50 potential locations, testing the
impact of adding a solar panel at each of those locations, and
finally placing the new solar panel at the location with the best
score. This procedure continues until all 200 panels have been
placed (for a total of 200 x 50 simulation runs). This simple
algorithm is only meant to demonstrate GridSpice’s capability

ANDERSON et al.: GRIDSPICE: A DISTRIBUTED SIMULATION PLATFORM FOR THE SMART GRID

Algorithm 1. Greedily place solar panels on a single distri-
bution network
Model + loadModel()
for k£ =1 to 200 do
candidates <{}
for j =1 to 50 do
model’ <Model.copy()
dist N etwork <—model’.getDistribution(0);
size <—distNetwork.getCustomers().size();
rand <+—Random(0, size)
customer <—distNetwork.getCustomer(rand);
customer.attach(new SolarPanel())
candidates <—(model’V{candidates})

end for
Model + argmax Score(parallel Sim(C))
Céeccandidates
end for

to create parallel simulations. More sophisticated algorithms
may use additional heuristics to select potential locations.

B. Example 2 (Cosimulation)

This example extends the previous example to highlight
the cosimulation capabilities of GridSpice. Instead of using a
single bus transmission network as in Example 1, this example
uses the IEEE 14-bus test model [11]. The generators and
distribution networks attached to the transmission buses are
summarized in Table 1.

As in Example 1, we use a simple greedy algorithm to
select customer locations. However, the customer locations can
now be spread across different distribution networks, which
may be attached to different transmission buses. Therefore, the
locational marginal prices of the transmission network can now
affect the assignment of the panels. The updated pseudocode
is shown in Algorithm 2.

C. Applications

The GridSpice framework has been used in a study on

demand response and in several class projects.

1) Simulating integrated volt/var control and distributed
demand response [1]: This paper proposes a new
integrated volt/var control scheme that uses demand
response capacity to improve the reliability and reduce
power consumption of a distribution network. GridSpice
was used to test the control scheme outlined in [17].

2) Stochastic control of electric vehicle charging [10]: In
this project, GridSpice was used to show the efficacy of
a multiagent reinforcement learning system for electric
vehicle charging on a constrained network using meth-
ods outlined in [18].

3) Comparison of community-scale and distributed
residential-scale photovoltaics [7]: In this class project,
GridSpice was used to compare various placements of
residential rooftop solar panels. This study shows that
solar panels and active inverters can be used to improve
power quality throughout the distribution grid.

2357

TABLE I
TRANSMISSION NETWORK FOR EXAMPLE 2

Bus Type Connections

0 Swing Generator 1

1 PV Generator 2

3 PV Generator 3

4 PQ Distribution A

5 PQ Distribution B , Distribution C

6 PV Generator 4

7 PQ Distribution D , Distribution E

8 PV Generator 5

9

PQ Distribution F, Distribution G, Distribution H

10 PQ Distribution I
11 PQ Distribution J
12 PQ Distribution K
13 PQ Distribution L
14 PQ Distribution M

Algorithm 2. Greedily place solar panels across multiple
distribution networks considering varying locational marginal
prices
Model + loadM odel ()
for £ =1 to 200 do
candidates <{}
for j =1 to 50 do
model’ <Model.copy()
networkCount <model’.getDistributions().size();
x <Random(0, networkCount)
customerCount <—model’.getDistNetwork(x).size();
x <—Random(0, customerCount)
customer <—model’.getNetwork(0).getCustomer(x);
customer.attach(new SolarPanel())
candidates <—(model’V{candidates})

end for
Model < argmax Score(parallel Sim(C))
Céccandidates
end for

4) Photovoltaic integration on distribution networks [9]:
This study shows the benefits of adding both stor-
age and rooftop solar at residential customer locations.
GridSpice was used to estimate the ideal amount of
storage under various assumptions about storage costs,
electricity prices, and feed in tariffs.

S) Electrical characteristics of distributed photovoltaics
[8]: In this class project, GridSpice is used to character-
ize the dangers arising from back feeding on residential
solar. The project estimates the maximum penetration
levels under various safety tolerances and volt/var regu-
lation schemes.

IV. ANALYSIS AND COMPARISON

This section compares GridSpice to existing cosimulation
frameworks in terms of scalability, flexibility, scope, and time-
granularity.

2358

A. Scalability

The primary advantage of GridSpice over existing
cosimulation platforms is scalability. Although cosimulation
frameworks support distributed simulation, they do not provide
direct support for running on a cloud infrastructure. For
example, electric power and communication synchronizing
simulator (EPOCHS) [26] is designed to run on dedicated
hardware using static provisioning. In contrast, GridSpice uses
Amazon Web Services (AWS) and creates dynamically sized
clusters, adding and deleting virtual machines as needed.

Aside from the obvious cost and scalability benefits of
running in the cloud, GridSpice provides benefits over existing
distributed cosimulation platforms by using a hierarchical ap-
proach to dividing tasks. In [23], several cosimulation methods
based on the HLA [22] standard are discussed. The HLA
architecture uses a run-time infrastructure (RTI), which han-
dles the global simulation clock and exchanges boundary state
between subsimulations. In that sense, the RTI is very similar
to the GridSpice supervisor. However, unlike HLA, GridSpice
allows light-weight agents to run locally within the supervisor.
This improves scalability by removing unnecessary messaging
overhead for simple agents, as discussed in Section II.

GridSpice is highly scalable since its integrated simulators
are CPU-bound and “loosely coupled,” meaning that the
messaging overhead from interactions between simulators is
insignificant compared to the CPU overhead of running each
simulator. This property is evident in Fig. 4, which shows the
time required to simulate the NYISO 2935-bus transmission
network [5] with different numbers of connected distribution
feeders for a 24-h period using alternating current optimal
power flow (AC OPF) on the transmission network. Instances
of each of the feeders shown in Fig. 4 are connected to
randomly chosen PQ buses from the transmission network.
Customer load data are generated in 15-min time intervals.
Thus, the power flow for the transmission network and each
distribution network is solved 96 times over the course of the
simulation. Since each of these simulations is loosely coupled,
our results show that simulations achieve nearly linear speedup
by provisioning additional virtual machines until the point
where each network is running on its own virtual machine.

The GridSpice framework does not add significant overhead
to synchronize the boundary state between subsimulations
running on different nodes. Fig. 5 shows that on average a
virtual machine involved in the simulation spends about 70%
of its time executing simulation related CPU instructions, 20%
waiting on disk I/O for data such as the network model or
load information, and 10% synchronizing messages to keep
the boundary state consistent.

B. Flexibility

Since existing power system simulation tools are often de-
signed to run on specific computing platforms, there has been
considerable work on developing interoperable methods for
synchronizing tools running on different platforms. Notably,
the HLA [22] standard defines a mechanism for federating
simulation tools using an RTI to synchronize boundary state.
GridSpice uses an approach similar to HLA, exchanging

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014

Varying gridlab-D performance across different cluster sizes
120 T T

5 networks
— = 10 networks
— — ~ 15 networks
20 networks H

100 ..

80]

60F]

Time (s)

40 F ~ & 4

20 o = B, e

5 10 15 20
of virtual machines

Fig. 4. Time required to simulate the NYISO 2935-bus transmission network
with different numbers of attached distribution networks and available virtual
machines.

80%

70%

60%

50%

40%

30%

20%

% of tatal simulation time

10%
ox L

Disk 1/0

—

GridSpice
messaging

CPU

Fig. 5. Performance measurements of the NYISO 2935-bus transmission
network with 100 synchronized distribution networks running on 100-VMs.

synchronization messages over a network. GridSpice provides
this flexibility in a particularly cost-effective way because it
can modify both the number and size of the instances of
each platform depending on the requirements of the current
simulation. For example, if the current simulation has many
subsimulations that can run only on a Windows machine,
GridSpice can dynamically create and destroy the necessary
number of instances. AWS provides support to run many
flavors of Windows and Linux virtual machines and to created
customized images for a simulator. When integrating a new
simulation tool into GridSpice, the user specifies the name
of the machine image in the supervisor. The supervisor then
ensures that the associated tasks are assigned to an appropriate
machine, as shown in Fig. 6.

The GridSpice framework offers further flexibility by pro-
viding a template for the supervisor proxy and for the simula-
tor wrapper discussed in Section II. To add a new simulator,

ANDERSON et al.: GRIDSPICE: A DISTRIBUTED SIMULATION PLATFORM FOR THE SMART GRID

Front end
(See Fig. 7)

Master node
(Linux)
Schedule windows task

‘ Grid engine '

IP. communication
(See Fig. 2)

Schedule linux task

' Grid engine

Supervisor
(Repast)

nse} Jeig
nse} peig

Worker node Worker node

(Windows)

(Linux)

Fig. 6. Coordination between cross-platform simulation tasks.

the user modifies the template to include the shared state vari-
ables. One benefit of using RePast is that the user adds simple
Java annotations to specify the input and output dependencies,
and the routing logic within the supervisor relies on a widely
adopted and robust code. The wrapper template implements
the functionality to send and receive the shared variables on
the worker node. The user is responsible for extending the
wrapper template to interface with the new simulator.

C. Scope

In theory, any cosimulation framework provides complete
modeling scope if it allows the integration any simulator. In
practice, frameworks are most useful if they provide direct
and tested support for a given subsimulator. Most existing
frameworks provide out-of-the-box support for cosimulating
communication networks and transmission networks, e.g.,
[24]-[29], [31]. These frameworks are useful for studying
problems such as protection on transmission systems, but do
not provide robust support or a large array of models for
distribution systems. A few frameworks, e.g., [19]-[21], pro-
vide direct support for distribution modeling, but they do not
provide the scalability and flexibility benefits discussed above.
GridSpice, through its integration with Gridlab-D, provides
support for detailed modeling of end use loads and customer
behavior alongside transmission and economic dispatch.

D. Time-Granularity

Many existing cosimulation platforms, e.g., [16], [24]-[29],
[31], focus on fine-grained (millisecond-level) cosimulation of
communication networks and power networks. GridSpice is
designed to provide courser grained synchronization across
loosely coupled transmission and distribution subsimulators.
Subsecond interactions relating to communications and control
systems should be fully contained within the integrated sub-
simulators running on a single machine. The recent release
of Gridlab-D 3.0 already provides capabilities for modeling

2359

TABLE 11
GRIDSPICE MAXIMUM UPDATES PER SECOND
Remote tasks Single \/N All
10 10000 | 3100 | 1000
50 2000 280 40
100 1000 100 10
200 500 35 3

communications systems and efforts for integrating the more
robust ns-3 simulator [30] are already in progress. Nonethe-
less, GridSpice allows the user to define the shared state and
synchronization intervals between subsimulators. Thus, the
granularity is ultimately up to the user.

Table II provides the maximum update rate of the GridSpice
supervisor, which can be used to estimate the feasibility of
integrating a certain set of subsimulators. In a simulation
with 200 remote tasks (subsimulators) in which updates to
the boundary state from each remote task affect an average
of v/200 other remote tasks, the GridSpice framework can
handle up to 35 updates per second. Each boundary state
variable counts as a separate update. Thus, if a remote task
has five boundary state variables, it should update these shared
variables less than seven times per second. If the update rate
exceeds this rate, the virtual time clock advances slower than
the realtime clock.

V. SYSTEM ARCHITECTURE AND IMPLEMENTATION

This section provides an overview of the architecture of the
GridSpice system and implementation details of its user in-
terface, model storage, scripting, and interfacing with external
tools and data inputs. Fig. 7 gives a top-level view of the entire
system. The front-end server coordinates all actions between
the user, the data, and the simulators. There are three different
mechanisms through which the user can interact with the front-
end server—a browser-based GUI, a Python library, and any
third-party library using the REST interface. The front-end
server begins a simulation by sending a request to the master
node of a simulation cluster, beginning the process described
in Section II. We describe each component of this system in
further detail below.

A. Simulation Clusters

The GridSpice system can have many simulation clusters
of varying sizes, and permissions for each cluster can be set
on a per-user basis. The operation of the simulation clusters
depicted in Fig. 7(a) is explained in detail in Section II.

B. Front-End Server

The front-end server coordinates all the actions between the
user, the data, and the simulators as shown in Fig. 7(b). The
components of the front-end server are expanded in Fig. 8 and
discussed below.

The front-end server performs the following key functions.

1) Importing models. The front-end server can import mod-

els from a CIM-based XML format or the Gridlab-D

2360

- ——— -y

{ Simulation 1\
clusters

Database
(f)

)

] (Network file system]

4
4

Front-end server
(b)

Third-party
(MATLARB, etc)
-
(e) -

Fig. 7. GridSpice top-level system architecture. (a) Simulation clusters. (b)
Front-end server (c) Browser interface. (d) Python library. (e) Third-party
interfaces. (f) Database. (g) Network file system. GridSpice top-level system
architecture.

GLM format. These models can come with or without
GIS data. If the models are provided with GIS informa-
tion, the browser interface provides a map-view of the
network in the graphical editor. If the models do not
contain GIS information, we use an algorithm derived
from the Java Universal Network Graph Framework [6]
to layout the network on a planar graph with minimal
line crossings. This algorithm uses a simulated annealing
technique where the penalty function is based on a
repulsion factor for each pair of nodes, an attraction
factor for each pair of connected nodes, and a penalty
for line crossings. The attraction factor is inversely
proportional to the length of the lines (stronger attraction
factors for nodes connected by shorter lines). In the
beginning, the algorithm makes large movements to
discover node placements with few line crossings. After
several iterations, the size of the movements slow, and
algorithm continues to adjust line lengths to find a
reasonable visualization of the network.

2) User authentication. When using the Python library or a
third-party library, the user must include an API key that
will authenticate each request. The user can optionally
reset the API Key at any time, allowing the user to give
temporary access to his GridSpice resources to another
entity such as an external data input or a postprocessing
tool (MATLAB, etc.). When using the browser GUI, the
user must login to the front-end server, and a browser
cookie will be set to authenticate all future requests.

3) Access control lists. The front-end server maintains an
access control list for each model and ensures the user
has permission to perform the requested action based on
his cookie or API key.

4) Simulation initialization and monitoring. The front-end
server is responsible for sending the control message
to the master node in the simulation cluster that starts
the simulation supervisor. This control message indicates
the location of the model files on the network file

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014

% “,
&
é@-@

Amazon S3 API

Database ;

Datanucleus

Simulation

GridSpice application logic nodes

Fig. 8. Front-end server.

system. The front-end server logs heartbeat messages
from the simulation cluster regarding the progress of
the simulation.

5) Cluster management. Users with appropriate privileges
can start, stop, create, and delete clusters of varying
sizes. Since cloud services such as AWS charge by the
hour, this can be used to start a new large cluster for a
short period of time without incurring excessive costs.

In the current version of GridSpice, there is only one front-
end server that fulfills these roles for all users and simula-
tions. However, the architecture could be extended to include
multiple front-end servers along with a load balancer.

C. Browser Interface

GridSpice provides a GUI that allows users to perform the
basic tasks of the GridSpice system. The GUI provides a subset
of the features available through the REST API and Python
library. It is intended to be a tool for beginners to familiarize
themselves with the system and for experienced users to sanity
check their models. The interface runs in JavaScript in the
client’s browser and was built using Google Web Toolkit and
the EXT-GWT library.

The GUI provides several different useful views.

1) GIS editor. If the network model contains GIS informa-
tion, the GIS Editor allows users to visualize the network
on a Google map as shown in Fig. 9. If the network
model does not contain GIS information, the GIS Editor
can visualize the map on a blank background after
running the GridSpice layout tool described in Section
V-B. The user can add or delete objects in the map
view, and also click objects to open the corresponding
properties editor. The map view layers objects hierar-
chically and adjusts the number of displayed items for
large networks.

2) Explorer editor. The GUI offers a separate explorer view
that allows the user to list elements in a hierarchical

ANDERSON et al.: GRIDSPICE: A DISTRIBUTED SIMULATION PLATFORM FOR THE SMART GRID

User: gridspicedemo@gmai. com Not gridspicedemo? (Log Out)
o Distribution Simulation Settings
New Project N New N T server

Save E4 swien 154

Edtor ... Edtor .o

- Vaidate ¥
Background ~
Cimate Clock
« Modules +

import Export
- Load Project

View Download

SimpleWithCoor
DISTRIBUTION_NETWORK
triplex_meter
underground_line
node

transformer

regulator

triplex_line

overhead_line

load

Fig. 9. GIS Editor in GridSpice browser UI.

File Management Transmission Distribution Simulation Settings Resuts

0O O W

Run Stop Cimate Clock View Download

" NewProect —. New
" ;'ﬂ Ex. Save Project l.] Switch L\ Clear
mg port —

v Load Project E9O" pore + EGIOr porg o

N New

lodules ~

First Project WECC
DISTRIBUTION_NETWORK New Element Batch Update Modfy Fiter Eloments Select Al Deselect Al Fier Columns Save Delete
triplex_meter | Name latitude.

NAVAJO ... 35576817
VALMY 3.

longitude name parent
110148926 NAVAJO 500 {1202}

VALMY 345 (6403}

TERMINAL 345 {6508}

underground._line

40806533
node

117.127304
TERMIN... 39.507418
RIVER2.. 3408764

| weswi

119.782476
118.224564
11225152

RIVER 230 {2613}
WESTWING 500 {1402}
VALLEY 500 {2403)

reguiator 33731085
3430847
CRAIG2.. 40880295
| HANFOR... 46613837
MORRO... 36.398693
GRIZZLY.
INTERM... 34050488
32789265
MDWAY... 36513038
METCAL.. 37.260442
MERIDIA... 423763

triplex_line VALLEY 118.478052
107512207
119.455032

120,839825

CRAIG 20 {7032}
HANFORD 20 (4132}
MORROBAY 20 {3836}
44626235 121.276531 GRIZZLYS 500 {4095}
118.263702

117.012978

INTERM1G 20 {2634)
OLIVE 230 {2611}
MIDWAY3 500 {3894}
METCALF 20 (3333}

OLIVE 23.
119.424346
121699333
122.803459 MERIDIAN 500 {4204}
Node Node

GREGG... 37.002553
STAB22.. 34094550 118.23967
NEWARK... 375010494 1219852386
MIDPOIN... 4283528 114.42

119.821265

GREGG 230 {3401}
STA B2 287 {2606}

NEWARK 230 {3203)
MIDPOINT 20 {6132}

Fig. 10. Hierarchical Explorer Editor in GridSpice browser UL

spreadsheet format shown in Fig. 10. In this view, the
user can apply batch updates to properties of objects that
match a given regular expression. The user can apply a
number of built-in macros such as adding a roof-top
solar to 50% of the buildings in the network.

3) Object editor. The object editor provides a graphical
menu to edit the properties of the object. For example,
a transformer object has a number of editable proper-
ties such as phase, max power, and nominal voltage.
The property editor uses appropriate widgets for each
different data type so the user understands the available
options and knows which properties must be defined
for the model to be valid. For example, a string or
integer uses a validated textbox, a set uses checkboxes,
and an enumerated type uses a drop-down menu. This
view contains a description field to explain some of the
esoteric properties.

2361

4) Import wizard. The GUI provides an import wizard
through which users can upload network models and
load data files into the open project. The upload wizard
can also accept a compressed zip archive to ease the
import of a large projects containing many networks and
load files.

D. Python Library

The Python library provides a convenient way for users to
create and edit network models, run simulations, and collect
results. The library provides a class for each of the available
object types with their defined properties and units. This allows
the user to easily understand how to change the models.

E. Third-Party Library

The GridSpice front-end server implements a REST inter-
face with standard CRUD (create-read-update-delete) interface
to each of the main entities in the system. This standardization
allows the interface to be implemented in any language or
external library. The provided Python library and Browser-
based GUI are examples of client-side applications that use
this interface, and can be referenced as a template for making
calls to the GridSpice server from the language or library of
choice. Since the REST interface uses the HTTP protocol,
built-in MATLAB libraries can be used to authenticate with
the application server and download the simulation outputs.

Furthermore, because of the stateless semantics of REST,
there is no requirement that a single client implementation be
used. For example, a user could use the Python library to setup
simulations, use the browser GUI to perform a visual sanity
check on models, and use MATLAB for postprocessing.

F. Database

The front-end server represents metadata associated with
all accounts, projects, models, simulations, and data files as
plain old java objects (POJOs). These objects are persisted and
restored using the Java Data Objects API on the DataNucleus
platform. The advantage of this strategy is that the application
logic running on the front-end server is decoupled from the
database implementation. An administrator may choose to use
a different database depending on size and scale of a particular
GridSpice installation. DataNucleus provides tools for easy
integration with a number of relational databases such as
MySQL as well as nonrelational databases such as HBase
or Google BigTable. The current release of GridSpice uses
a single instance MySQL server that meets our demands.

G. Network File System

The GridSpice network file system is implemented using
Amazon S3, which provides a redundant data storage infras-
tructure that allows data to be securely read and written from
anywhere on the web. This file system is used to store all
loosely structured files in GridSpice system such network
models, time-series load data, and simulation output and
error logs.

2362

H. Administration Console

GridSpice provides a web-based administration console
hosted on the front-end server. This console allows an autho-
rized administrator to create user accounts, grant users access
to projects and models, create new simulation clusters, and
start/stop/delete existing simulation clusters.

VI. CONCLUSION

GridSpice provides a scalable and extensible platform for
modeling, designing, and planning of the smart grid. It allows
utilities, energy services providers, regulators, researchers,
educators, and students to solve problems in the smart grid
that cannot otherwise be accurately modeled by existing
simulators either because of scale or modeling capability.
GridSpice’s ability to run on public cloud systems with a
pay-as-you-go model makes it possible for budget-constrained
entities to simulate complex smart grid scenarios. Its generic
simulator wrappers also allow users to plug in new tools to
seamlessly interoperate with current tools. We have shown that
the framework can run aggregated simulations using separate
distribution and transmission system simulators, while adding
minimal overhead.

ACKNOWLEDGMENT

The authors would like to thank B. Entriken with
the Electric Power Research Institute (EPRI) and Prof.
R. Rajagopal of Stanford for their insight and guidance. They
would also like to thank Pacific Northwest National Labs for
their support of the Gridlab-D package through this process,
and the anonymous reviewers for suggestions that have greatly
improved this paper.

APPENDIX A
GETTING STARTED WITH GRIDSPICE

The entire GridSpice system is available in open source
under the BSD license. The code is available as a set of
five repositories for the each GridSpice subsystem: front-
end server, simulation supervisor, simulation node, Python
API, and GUI In order to ease the process of setting up a
GridSpice cluster, we have created several scripts and publicly
available Amazon Machine Images that allow the system to
be automatically created within a user’s Amazon EC2 account.
This option provides a much easier way to create the system
than building it from the source.

REFERENCES

[1] K. Anderson and A. Narayan, “Simulating integrated volt/var control and
distributed demand response using GridSpice,” in Proc. IEEE Conf. 1st
Int. Workshop Smart Grid Model. Simul. (SGMS), Oct. 2011, pp. 84-89.

[2] K. Anderson, J. Du, A. Narayan, and A. E. Gamal, “GridSpice: A
distributed simulation platform for the smart grid,” in Proc. Workshop
Model. Simul. Cyber-Phys. Energy Syst. (MSCPES), May 20, 2013,
pp. 1-5.

[3] D. P. Chassin and K. Schneider, “GridLAB-D: An open-source power
systems modeling and simulation environment,” in Proc. IEEE Trans-
miss. Distrib. Conf. Expo., Chicago, IL, USA, Apr. 2008, pp. 1-5.

[4] M.J. North et al., “Complex adaptive systems modeling with repast sim-
phony,” Complex Adapt. Syst. Model., 2013, doi:10.1186/2194-3206-1-3.

(5]

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014

R. D. Zimmerman, C. E. Murillo-Snchez, and R. J. Thomas, “MAT-
POWER steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 1219, Feb. 2011.

J. Madadhain, D. Fisher, P. Smyth, S. White, Y. B. Boey, “Analysis and
visualization of network data using JUNG,” J. Stat. Software, pp. 1-25,
2005.

K. Kallevig-Childers,
of community-scale

E. Thomas, and L. Vogel, “Comparison
and distributed residential-scale photo-

voltaics,” Stanford University, Stanford, CA, USA, CEE272R:
Modern Power Systems Engineering Project Reports, Spring,
2012.

C. Nolen, A. Pearson, and G. Provost, “Electrical characteristics of
distributed photovoltaics,” Stanford University, Stanford, CA, USA,
CEE272R: Modern Power Systems Engineering Project Reports, Spring,
2012.

E. Arnold, A. Burdick, and S. Mei, “Photovoltaic integration on distri-
bution networks,” Stanford University, Stanford, CA, USA, CEE272R:
Modern Power Systems Engineering Project Reports, Spring, 2012.

K. Anderson, “Stochastic control of electric vehicle charging,” Stanford
University, Stanford, CA, USA, CS229: Machine Learning Project
Reports Autumn 2012.

Power Systems Test Case Archive. (2012). University of Washington
Electrical Engineering, Seattle, WA, USA [Online]. Available: http://
www.ee.washington. edu/research/pstca/

D. Montenegro, M. Hernandez, G. A. Ramos, “Real time OpenDSS
framework for distribution systems simulation and analysis,” in Proc. 6th
IEEE/PES Transmiss. Distrib.: Latin America Conf. Exposition (T&D-
LA), Sep 3-5, 2012, pp. 1-5.

D. Aliprantis, S. Penick, L. Tesfatsion, and Huan Zhao “Integrated retail
and wholesale power system operation with smart-grid functionality,”
in Proc. IEEE Power Energy Soc. Gen. Meet., Jul. 25-29, 2010,
pp. 1-8.

K. N. Miu and H.-D. Chiang, “Electric distribution system load capa-
bility: problem formulation, solution algorithm, and numerical results,”
IEEE Trans. Power Del., vol. 15, no. 1, pp. 436-442, Aug. 2000.

W. Chun-Yu et al., A framework for multi-agent-based stock market
simulation on parallel environment, pp. 561-570.

C.-h. Yang, G. Zhabelova, C.-W. Yang, and V. Vyatkin, “Cosimulation
environment for event-driven distributed controls of smart grid,” /EEE
Trans Ind. Informat., vol. 9, no. 3, pp. 1423-1435, Aug. 2013.

H. Ma, K. W. Chan, and M. Liu, “An intelligent control scheme to
support voltage of smart power systems,” IEEE Trans. Ind. Informat.,
vol. 9, no. 3, pp. 1405-1414, Aug. 2013.

F. Kennel, D. Gorges, and S. Liu, “Energy management for smart grids
with electric vehicles based on hierarchical MPC,” IEEE Trans. Ind.
Informat., vol. 9, no. 3, pp. 1528-1537, Aug. 2013.

A. Monti, M. Colciago, P. Conti, M. Maglio, and R. Dougal, “A co-
simulation approach for analysing the impact of the communication
infrastructure in power system control,” in Proc. Grand Challenges
Model. & Simul. Conf. (GCMS’09), 2009, pp. 278-282.

T. Godfrey et al., “Modeling smart grid applications with co-simulation,”
in Proc. Ist IEEE Int. Conf. Smart Grid Commun. (SmartGridComm),
pp. 291-296, 2010.

F. Ponci, A. Monti, and A. Benigni, “Simulation for the design of smart
grid controls,” in Proc. IEEE 1st Int. Workshop Smart Grid Model. Simul.
(SGMS), pp. 73-78, Oct. 2011.

IEEE Standard for Modeling and Simulation (M&S) High Level Archi-
tecture (HLA)—Framework and Rules, Std 1516-2010 (Revision of IEEE
Std 1516-2000), Aug. 18, 2010, pp. 1-38.

R. Bottura et al., “SITL and HLA co-simulation platforms: Tools for
analysis of the integrated ICT and electric power system,” in Proc.
EuroCon, Zagreb, Croatia, pp. 918-925, Jul. 14, 2013.

S. P. Carullo and C. O. Nwankpa, “Experimental validation of a model
for an information-embedded power system,” IEEE Trans. Power Del.,
vol. 20, no. 3, pp. 1853-1863, Jul. 2005.

D. Wang et al, “Design of a novel wide-area backup protection
system,” in Proc. IEEE/PES Transmiss. Distrib. Conf. Exhib.: Asia and
Pacific, 2005, pp. 1-6.

K. Hopkinson et al., “EPOCHS: A platform for agent-based electric
power and communication simulation built from commercial off-the-
shelf components,” IEEE Trans. Power Syst., vol. 21, no 2, pp. 548-558,
May 2006.

J. Nutaro, P. T. Kuruganti, L. Miller, S. Mullen, and M. Shankar,
“Integrated hybrid-simulation of electric power and communications
systems,” in Proc. IEEE Power Eng. Soc. Gen. Meet., Tampa, FL, USA,
Jun. 24-28, 2007.

ANDERSON et al.: GRIDSPICE: A DISTRIBUTED SIMULATION PLATFORM FOR THE SMART GRID

[28] H. Lin, S. S. Veda, S. S. Shukla, L. Mili, and J. Thorp, “GECO: Global
event-driven co-simulation framework for interconnected power system
and communication network,” IEEE Trans. Smart Grid, vol. 3, no. 3,
pp. 1444-1456, Sep. 2012.

S. C. Muller, H. Georg, C. Rehtanz, and C. Wietfeld, “Hybrid simulation
of power systems and ICT for real-time applications,” in Proc. 3rd IEEE
PES Innov. Smart Grid Technol. Europe (ISGT Europe), 2012, pp. 1-7.
J. C. Fuller, S. Ciraci, J. A. Daily, A. R. Fisher, and M. Hauer,
“Communication simulations for power system applications,” in Proc.
Workshop Model. Simul. Cyber-Phys. Energy Syst. (MSCPES), pp. 1-6,
May 20, 2013.

H. Georg, S. C. Muller, N. Dorsch, C. Rehtanz, and C. Wietfeld,
“INSPIRE: Integrated co-simulation of power and ICT systems for
real-time evaluation,” in Proc. IEEE Int. Conf. Smart Grid Commun.
(SmartGridComm), pp. 576-581, Oct. 21-24, 2013.

[29]

[30]

[31]

Kyle Anderson (S’12) received the B.S. degree in
electrical engineering in 2010, where he graduated as
the Henry Ford Scholar; the M.S. degree in electrical
engineering in 2012; and is currently pursuing the
Ph.D degree from Stanford University, Stanford, CA,
USA.

He has previously worked as a Software Engineer
with Ericsson, Plano, TX, USA; Arista Networks,
Santa Clara, CA; and Google, Mountain View, CA.

Mr. Kyle is a Mayfield Fellow, a Stanford
Graduate Fellow (SGF), a recipient of the Frederick
Emmons Terman Award, a recipient of the 2010 Agilent Award, and a member
of Tau Beta Pi.

Jimmy Du received the B.S. degree in electrical
engineering from Stanford University, Stanford, CA,
USA. He is a Graduate Student at the same uni-
versity where he is pursuing the M.S. degree in
electrical engineering.

He is an Asian Pacific Islander American Scholar-
ship Fund (APIASF) Scholar. His research interests
include smart grid controls and distributed systems.

Mr. Du is an APIASF Scholar.

Amit Narayan received the B. Tech. degree in
electrical engineering from the Indian Institute of
Technology, Kanpur, India, in 1993, and the Ph.D.
degree in electrical engineering from the University
of California at Berkeley, Berkeley, CA, USA, in
1998.

He was the Director of Smart Grid Research in
Modeling and Simulation at Stanford University,
Stanford, CA, USA, and currently is the Founder
and CEO of AutoGrid Systems, Redwood Shores,
CA. He has published over 25 papers in the area
of design automation, holds seven U.S. patents, and is an Active Advisor to
several startup companies in the bay area.

2363

Abbas El-Gamal (M’71-F’12) received the B.Sc.
(Hons.) degree in electrical engineering from Cairo
University, Giza, Egypt, and the M.S. degree in
statistics and the Ph.D. degree in electrical engineer-
ing from Stanford University, Stanford, CA, USA, in
1972, 1977, and 1978, respectively.

From 1978 to 1980, he was an Assistant Professor
of Electrical Engineering with the University of
Southern California, Los Angeles, CA. Since 1981,
he has been a Member of Faculty with Stanford
University, where he is currently the Hitachi Amer-
ica Professor with the School of Engineering. In 1984, he founded the LSI
Logic Research Lab, San Jose, CA, which later became the Consumer Product
Division. In 1986, he cofounded Actel, Mountain View, CA, where he served
in several capacities, including Chief Scientist. In 1999, he cofounded Silicon
Architects, where he was a Chief Technical Officer and a Member of the
Board of Directors until Synopsys, Mountain View, acquired it in 1995. He
was a Vice President of Synopsys from 1995 to 1997. He cofounded Pixim,
Mountain View, in 1999 to commercialize the technology developed under
the programmable digital camera program. He has also served on the board
of directors and advisory boards of several other semiconductor, electronic
design automation (EDA), and biotech startups. From 1997 to 2002, he
served as the Principal Investigator on the Programmable Digital Camera
Program, Stanford University. From 2004 to 2009, he was the Director of
the Information Systems Laboratory, Stanford University. He was a Visiting
Professor and MacKay Fellow with the University of California, Berkeley,
CA, in Fall 2009-2010 and visited Tsinghua University, Beijing, China, as a
Member of the Tsinghua Guest Chair Professor Group on Communications
and Networking in Spring 2009-2010. His research interests include network
information theory, field programmable gate array, and digital imaging devices
and systems. He has authored or coauthored over 200 papers and holds 30
patents in these areas.

Prof. El Gamal is a Member of the National Academy of Engineering,
Washington, DC, USA. He has received several honors and awards for
his research contributions, including the 2012 Claude E. Shannon Award
and the 2004 IEEE International Conference on Computer Communications
(INFOCOM) Paper Award.

)

L

