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Abstract— Consider a Gaussian relay network where a source
node communicates to a destination node with the help of several
layers of relays. Recent work has shown that compress-and-
forward-based strategies can achieve the capacity of this network
within an additive gap. Here, the relays quantize their received
signals at the noise level and map them to random Gaussian
codebooks. The resultant gap to capacity is independent of the
SNRs of the channels in the network and the topology, but is
linear in the total number of nodes. In this paper, we provide an
improved lower bound on the rate achieved by the compress-and-
forward-based strategies (noisy network coding in particular)
in arbitrary Gaussian relay networks, whose gap to capacity
depends on the network not only through the total number of
nodes but also through the degrees of freedom of the min cut of
the network. We illustrate that for many networks, this refined
lower bound can lead to a better approximation of the capacity.
In particular, we demonstrate that it leads to a logarithmic
rather than linear capacity gap in the total number of nodes
for certain classes of layered networks. The improvement comes
from quantizing the received signals of the relays at a resolution
decreasing with the total number of nodes in the network. This
suggests that the rule-of-thumb in the literature of quantizing
the received signals at the noise level can be highly suboptimal.

Index Terms— Relay networks, gap to capacity, noisy network
coding, network topology, quantization.

I. INTRODUCTION

CONSIDER a source node communicating to a destination
node via a sequence of relays connected by point-to-point

AWGN channels, as depicted in Figure 1. The capacity of this
line network is achieved by simple decode-and-forward and
is equal to the minimum of the capacities of the successive
point-to-point links. The decoding at each stage removes
the noise corrupting the information signal and therefore the
end-to-end rate achieved is independent of the number of times
the message is retransmitted.

Unfortunately, the optimality of decode-and-forward is
limited to this line topology, and in physically degraded
networks in general. In more general networks with multiple
relays at each layer, it is well-understood that the rate
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Fig. 1. Line network.

achieved by decode-and-forward can be arbitrarily smaller
than capacity. Characterizing the capacity of more general
networks has been of interest for a long time [3] (also see [4]
and references therein). Recently, significant progress has been
made ([5]–[9]) which shows that compress-and-forward based
strategies can be a better fit for general relay networks. Here,
relays quantize/compress their observations without decoding
and forward the compressions to the destination by mapping
them to a new codebook. In particular, it has been shown
that compress-and-forward based relaying strategies (such as
quantize-map-and-forward in [5] and noisy network coding
in [6]) can achieve rates that are within a bounded gap to
the capacity of any relay network with multi-source multicast
traffic. The gap is independent of the coefficients and SNR’s
of the constituent channels and the topology of the network.
However, it depends linearly on the total number of nodes
which limits the applicability of these results to small networks
with a few relays. A recent result that we would like to
point out here is [10] in which an extension of partial-decode-
forward, called distributed decode-forward, has been shown to
achieve a similar result. The gap to capacity for this scheme is
also shown to be linear in the number of nodes, with a lower
constant compared to noisy network coding.

Since the gap to capacity of compress-forward based strate-
gies is linear in the number of nodes, for the line network
in Figure 1, they yield an achievable rate whose gap to
capacity is linear in the depth of the network D. One natural
way to explain this gap is the noise accumulation. As the
information signal proceeds deeper into the network, it is
corrupted by more and more noise. Therefore, any strategy that
does not remove the noise corrupting the signal at each stage
by decoding the source message will naturally suffer a rate
loss that increases with the number of stages. However, it is
not clear why this rate loss should be linear in the depth of the
network as the current results in the literature suggest [5]–[7].
The total variance of the accumulated noise over the D stages
of the network is D times the variance of the noise at each
stage (assuming identical noise variances over the D stages).
A factor of D increase in the noise variance in a point-to-point
Gaussian channel would lead to at most a log D decrease in
capacity, and therefore it is natural to ask if we can reduce
the performance loss of compress-and-forward strategies from
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linear to logarithmic in D, first in the context of this example
and then in more general networks.

The first contribution of this paper is to show that a judi-
cious choice of the quantization (or compression) resolutions
at the relays can significantly improve the performance of
compress-and-forward based strategies (noisy network coding
in particular). For example in the line network in Figure 1,
if the relay nodes quantize their observed signals at a resolu-
tion decreasing linearly in D, the rate loss due to compress-
and-forward is only logarithmic in D. (See Section IV.) This is
counterintuitive as coarser quantization introduces more noise
to the communication and our result suggests that the more
relaying stages we have, the more coarsely we should quantize.
The rule-of-thumb used in the current literature [5]–[7] is to
quantize the received signals at the noise level (independent
of the number of relays) which we show to be highly
suboptimal. The improvement due to coarser quantization is
because in compress-and-forward, there is a rate penalty for
communicating the quantized signals to the destination and
this rate penalty can be significantly larger than the rate penalty
associated with coarser quantization. A detailed discussion on
this is presented in Section V. The fact that optimizing the
quantization resolutions can lead to better rates for compress-
and-forward was also observed in [11] and [12] in the context
of the Gaussian diamond network.

An immediate question is whether this observation can lead
to better capacity approximations for more general Gaussian
networks beyond the line network. To address this question,
we suggest a new approximation philosophy for the capacity
of Gaussian networks. The current approach is to approximate
the capacity within a gap that depends only on the number
of nodes. However, two networks with the same number of
nodes can have very different topologies which can potentially
lead to significantly different performance for compress-and-
forward. While it is desirable to have capacity approximations
which are independent of the instantaneous channel realiza-
tions and SNR’s in the network, since these parameters have
a wide dynamical range and typically change over a short time
scale in wireless networks, topological properties of a network
typically change over a much longer time scale. Developing
capacity approximations which reveal the dependence of the
gap not only on the number of nodes but other structural
properties of the network can allow for a better understanding
of the performance gap of compress-and-forward strategies
as well as yield tighter capacity approximations for many
Gaussian networks.

The main result of this paper is a new capacity approx-
imation for Gaussian networks where the gap to capacity
depends not only on the number of nodes but also on the
number of degrees of freedom (DOF) of the mincut of the
network. While the DOF of the mincut of the network can be
carefully evaluated for a given network with specific channel
realizations (in which case our result will yield the tightest
approximation for this network), in many cases this quantity
can be easily bounded based only on the topological properties
of the network. For example, for the line network in Figure 1
the DOF of the mincut is trivially bounded by 1, while for
a diamond network [11] it can be trivially bounded by 2.

Fig. 2. Multi-layer relay network for K = 3, each Hi is a Rayleigh fading
matrix.

For such networks, our result yields a logarithmic rather
than linear gap in the number of nodes. As before,
the improvement is based on a judicious choice of the
quantization resolutions at the relays with noisy network
coding.

Finally, we look at specific settings and demonstrate that
our general result can yield better capacity approximations
for these settings than those available in the literature. The
first setup we consider is the multi-layer fast-fading Gaussian
relay network in Figure 2. Here a source node equipped with
K antennas communicates to a destination node equipped with
K antennas over D layers, each layer containing K single-
antenna relays. Each relay observes a noisy linear combination
of the signals transmitted by the relays in the previous layer.
All channels are subject to i.i.d. Rayleigh fast-fading. Current
results on compress-and-forward [5]–[7] yield a rate which is
within 1.3 K D gap to the capacity of this network, where
K D is the total number of nodes. Instead, we show that
if relays quantize their received signals at a resolution that
decreases as the number of layers increases, compress-and-
forward can achieve a rate which is within an additive gap
of K log D + K of the network capacity. So for a fixed K ,
as the number of layers D increases, this gap only grows
logarithmically in the depth of the network D.

As a side result, we provide an analysis of the compress-
and-forward based strategies in [5]–[7] in fast-fading wireless
networks. Fast-fading wireless networks are considered
in [5, Th. 8.4], however the conclusion of the theorem and
its proof are erroneous. The result in [5, Th. 8.4] suggests that
the ergodic fast-fading capacity of a wireless relay network is
approximately given by the expected value of the cutset upper
bound (where the expectation is over the fading distribution).
In contrast, we show that the capacity is approximately given
by the minimum of the expected cut values. The difference
is in the order of the expectation over the fading distribution
and the minimization over different cuts. Note that the second
quantity can be arbitrarily larger than the first.

The problem of developing better capacity approximations
for this setup has also been considered in [13], where a
computation alignment strategy is proposed to remove the
accumulating noise with the depth of the network. This yields
a gap 7K 3 + 5K log K. Computation alignment is based on
the idea of combining compute-forward [14] with ergodic
alignment proposed in [15]. While the gap to capacity obtained
by computation alignment is independent of D, this strategy is
significantly more complex than compress-forward and has a
number of problems from a practical perspective. In particular,
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ergodic alignment over the fading process leads to large
delays in communication and requires each relay to know the
instantaneous realizations of all the channels in the network.
Moreover, its performance critically depends on the symmetry
of the fading statistics. The compress-forward strategy with
improved quantization we propose in this paper requires only
the destination to know the instantaneous channel realizations
in the network. In particular, no channel state information is
required at the source and at the relays, and the fading statistics
are not critical to the operation of the strategy.

To illustrate this last point, we consider another setup
where the network has the same layered topology, however
the channel coefficients for each link are now fixed with unit
magnitudes and arbitrary phases (i.e. each channel coefficient
is of the form e jθ for some arbitrary θ ∈ [0, 2π]). Our approx-
imation gap for this setup is 2K 2 log D+K log K +K which is
again logarithmic in the depth of the network rather than linear.
Computation alignment is obviously not applicable in this case
and the best currently available capacity approximation for this
setup is 1.3K D which follows from capacity approximations
for general Gaussian networks [5]–[7].

The aforementioned and previous results raise the question
of whether tighter gaps scaling sublinearly in the network
size can be obtained in the general case (independent of
network topology). In this respect, we would like to mention
an interesting recent work [16] that shows that obtaining a
gap between capacity and cutset bound that is sublinear in
the number of nodes for general Gaussian relay networks is
possible if and only if the cutset bound is tight for all Gaussian
relay networks.

The paper is organized as follows. The next section
describes the model and some background. The main results
and a discussion of the results are presented in Section III.
We illustrate the basic idea behind the results via the simple
example of a line network in Section IV. Section V
aims to clarify the counterintuitive observation that coarser
quantization at the relays can result in a better achievable
rate. The formal proofs of the main results are presented
in Sections VI, VII and VIII.

II. MODEL AND PRELIMINARIES

In the following subsection, we describe the general model
of a Gaussian relay network, which is the subject of our main
result.

A. General Model

Consider a Gaussian relay network, as depicted in Figure 3
where a source node s communicates to a destination node d
a message m ∈ [1 : 2nR] in n transmissions with the help
of a set of relay nodes. Let the number of transmit antennas
and receive antennas at node i be Mi and Ni respectively.
We assume Ns = 0 and Md = 0. Let N denote the set of
all nodes and M = ∑

i∈N Mi and N = ∑
i∈N Ni be the

total number of transmit and receive antennas respectively. The
signal received by node i at time t is denoted as Yi [t] ∈ CNi ×1

which is given by

Yi [t] =
∑

j ̸=i

Hi j X j [t] + Zi [t],

Fig. 3. Gaussian relay network.

where Hi j ∈ CNi ×M j contains the (complex) channel gains
from node j to node i , and X j [t] ∈ CM j ×1 is the transmitted
vector by node j at time t . We assume that Ys = 0 and
Xd = 0. Each node is subject to an average power constraint P
per antenna and Zi [t] ∼ CN (0, σ 2 I ), independent across
time and across different receive antennas. The relays
are constrained to be strictly causal in their operations,
i.e. at any relay node i , Xi [t] can be a function only of
{Yi [1], Yi [2], . . . , Yi [t − 1]}.

A rate R is said to be achievable if the probability of error
of decoding the message m ∈ [1 : 2nR] at the destination d can
be made arbitrarily small by choosing a sufficiently large n.
The supremum of all achievable rates is called the capacity C
of the network.

In sections VII and VIII, we focus on the following
two special cases of Gaussian relay networks respectively.

B. Fast-Fading Layered Network

In section VII, as stated in the introduction and depicted
in Figure 2, we consider a fast-fading layered network, where
each layer except the first and last contains K single-antenna
nodes. The nodes in the i th layer are collectively referred
to as Vi where 0 ≤ i ≤ D, while a particular node j in
layer i is referred to as the pair (i, j). The layer V0 consists
of the source node s containing K transmit antennas, while
the layer VD consists of the destination node d , which has K
receive antennas. Let V i denote V0 ∪V1 ∪ · · ·∪Vi . We assume
that s and d are equipped with multiple antennas in order
to keep the problem interesting. Otherwise, the minimum
cut becomes the multiple-input-single-output cut from the
last layer of relays to d and this trivializes the problem of
approximately achieving the capacity of the network. Instead
of multiple antennas at d , one can also assume orthogonal
bit-pipes from nodes in VD−1 to d , as done in [13].

For 0 ≤ i ≤ D − 1, the received signal at node (i + 1, j) in
Vi+1 (or antenna if i = D − 1) depends only on the transmit
signals of nodes in Vi and at time t is given by

Y(i+1, j )[t] =
K∑

k=1

h(i,k)→(i+1, j )[t]X(i,k)[t] + Z(i+1, j )[t],

The channel gain h(i,k)→(i+1, j ) is i.i.d. CN (0, 1) across time
independent of everything else (i.e., other channel gains,
noise and transmitted signals). In other words, we assume
independent fast Rayleigh fading. The source nodes and the
relay nodes do not know the instantaneous realizations of the
channel coefficients, i.e have no transmit or receive channel
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RNNC ! sup∏
k∈N p(xk)p( ŷk |yk ,xk)

min
$:s∈$,d∈$c

(
I (X$; Ŷ$c |X$c ) − I (Y$; Ŷ$|XN , Ŷ$c )

)
. (3)

state information. (The source node knows the topology of the
network and the channel statistics, i.e. the end-to-end ergodic
rate supported by the network.) All instantaneous channel
realizations are known at the destination node and are used
while decoding the transmitted message from the source node.
Thus, we can effectively treat {Yd , H } as the received signal at
the destination, where H contains all the channel realizations.

C. Static Layered Network

The topology of the static layered network that we
consider in Section VIII is the same as that of the fast-fading
layered network, i.e. a source node with K transmit antennas
communicates to a destination node with K receive antennas
over D − 1 layers each containing K single-antenna relays.
However, instead of assuming fast-fading, we now focus on
the case where each channel gain h(i,k)→(i+1, j ) is an arbitrary
complex number with unit magnitude, i.e., of the form e jθ for
some arbitrary θ ∈ [0, 2π] (possibly different for different
(i, k) → (i + 1, j)), where the j in the superscript stands for
the imaginary unit.

D. Background

An upper bound on the capacity C of any relay network is
given by the cutset bound [17], which is as follows,

C ≤ C ! sup
p(xN )

(
min

$:s∈$,d∈$c
C($)

)
, (1)

where $ is a subset of N , and

C($) ! I (X$; Y$c |X$c), (2)

and $c denotes N \$. The notation X$ is standard and refers
to the set of random variables {Xi : i ∈ $}.

In [6], the authors propose an achievability scheme based
on compress-and-forward operation at the relays named “noisy
network coding” (NNC). This scheme achieves any rate R
that is less than RNNC, which is given in (3), as shown at
the top of this page. To keep the expressions short, we are
assuming that Ŷ$c contains Yd . In other words, Ŷd can be set
to be equal to Yd . We refer the reader to [6] for the details
of this scheme. It is shown in [6] that the gap between the
cutset bound and the rates achieved by noisy network coding
for Gaussian relay networks with multi-source multicast traffic
is no more than 1.3|N |.

III. MAIN RESULT

Given a Gaussian relay network as described in Section II-A
and a cut of this network $ ⊆ N , for any Q ≥ 0, we define

Ci.i.d .
Q ($) ! log det

(
I + P

(Q + 1)σ 2 H$→$c H†
$→$c

)
, (4)

where the matrix H$→$c denotes the induced MIMO matrix
from $ to $c. In the case of single-antenna nodes, it is

obtained by enumerating nodes in $ and $c in an arbitrary
fashion and H$→$c is the |$c| × |$| matrix whose (i, j)th
entry contains the channel coefficient from node j ∈ $ to
node i ∈ $c. In the case of multiple antennas, it is obtained by
enumerating the transmit antennas in $ and receive antennas
in $c and the entries of the matrix denote the corresponding
channel coefficient. In this paper, log denotes the natural
logarithm. The expression in (4) is the mutual information
across the cut $, defined in (2), when the channel input
distributions at each node are i.i.d. CN (0, P I ) and the noise at
each antenna is i.i.d. CN (0, (Q+1)σ 2) (instead of CN (0, σ 2)
as originally defined in Section II-A). For a given Q ≥ 0,
let $∗

Q be the cut that minimizes Ci.i.d .
Q ($),

$∗
Q ! arg min

$:s∈$,d∈$c
Ci.i.d .

Q ($). (5)

Let d∗
Q be the rank of the corresponding MIMO matrix

H$∗
Q→($∗

Q)c . We will also refer to d∗
Q as the number of

degrees of freedom of the MIMO channel corresponding
to the cut $∗

Q , expressed succinctly as

d∗
Q = DOF

(

arg min
$:s∈$,d∈$c

Ci.i.d .
Q ($)

)

. (6)

Note that the min cut $∗
Q and therefore d∗

Q depends on Q.
In particular, if Q1 and Q2 are two non-negative numbers and
say Q1 > Q2 ≥ 0, then d∗

Q1
can be larger than, smaller than

or same as d∗
Q2

. The following theorem states our main result.
Theorem 1: The capacity C of the network described in

Section II-A satisfies

C ≥ C ≥ C − d∗
0 log

(
1 + M

d∗
0

)
− N

Q
− d∗

Q log(Q + 1),

for any non-negative Q, where C is the cutset bound of the
network given in (1).

Note that Q in the theorem is a free parameter that can be
optimized for a given network to minimize the gap between
the achieved rate and the cutset upper bound. In the proof
of the theorem, we will see that Q corresponds to the
variance of the quantization noise introduced at the relays in
noisy network coding [6]; larger Q corresponds to coarser
quantization. In previous works [5], [6], Q is chosen to be
constant independent of the number of nodes (or antennas) N
(i.e. Q ≈ 1 and the quantization noise Qσ 2 is of the order
of the Gaussian noise variance σ 2). Observe that due to the
third term N/Q of the gap in Theorem 1, this results in a
gap that is at least linear in N . Trivially upper bounding both
d∗

0 and d∗
Q by N makes the first and the third term also linear

in N . However, in many cases, the min cut of the network
can have much smaller DOF than M and N and in such cases
allowing Q to depend on N can result in a much smaller gap.

For example, in the diamond network with single-antenna
at each node it is clear a priori that any cut of the network
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Fig. 4. Fast-fading layered network with multiple sources.

has at most two degrees of freedom, regardless of the number
of relays, and therefore d∗

Q ≤ 2 for any Q. It can be seen
immediately from the above theorem that choosing Q = N
in this case results in a gap logarithmic in N [11], which
compares favorably with a gap that is linear in N . Similarly,
for the fast-fading layered network with K single-antenna
nodes per layer defined in Section II-B, we show in Section VII
that d∗

Q ≤ K for any Q. If there are D layers in the network
so that N = M = K D, the above expression tells us that
choosing Q to be proportional to D gives a gap that is
logarithmic in D instead of linear in D. In Section VIII, we
demonstrate yet another setting in which applying Theorem 1
and choosing Q to be proportional to the number of layers
allows us to obtain an improved gap. This demonstrates that
the rule of thumb in the current literature to quantize received
signals at the noise level (Q ≈ 1) can be highly suboptimal.

Theorems 2 and 3 stated below provide formally the results
that are mentioned in the preceding paragraph.

Theorem 2: The capacity C of the fast-fading layered
network described in Section II-B satisfies

C ≥ C ≥ C − K log D − K . (7)

Theorem 2 follows from evaluating the required quantities
in the expression in Theorem 1 for the setup in Section II-B.
However, directly applying the result of Theorem 1 for this
setup yields a gap of 2K log D + K . It turns out that we can
further tighten the gap to K log D+K based on the observation
that for this setup, the cutset bound can be evaluated explicitly
and the optimal channel input distribution turns out to be
independent across the antennas. The detailed proof appears
in Section VII-A and VII-B.

The following corollary extends the result of Theorem 2
to the setup considered in [13]. In this setup, instead of a
single K -antenna source, there are K single-antenna sources
{s1, s2 . . . , sK } interested in communicating with the destina-
tion, as depicted in Figure 4. We show that Theorem 2 also
implies a similar result for the sum-capacity C of this network.

Corollary 1: The sum-capacity C of the network in Figure 4
satisfies

C ≥ C ≥ C − K log D − K . (8)

The proof of Corollary 1 appears in Section VII-C.
The following theorem states the result for the static layered

network setup, and the proof is given in Section VIII.
Theorem 3: For K ≥ 2 and D ≥ 2, the capacity C of the

layered network described in Section II-C satisfies

C ≥ C ≥ C − 2K 2 log D − K log K − K . (9)

IV. LINE NETWORK

We first illustrate the main idea of this paper in a simple
setting, the line network in Figure 1. Here we assume that
each link i is a AWGN channel with gain hi and the channel
gains hi are fixed and known. Each node has power P and
the noise variance is σ 2. (The conclusions below also hold
under a fast-fading assumption similar to the one described
in Section II.) It is clear that a decode-forward strategy at
the relays achieves the capacity of this line network, while
compress-and-forward based strategies (such as quantize-
map-forward in [5] and noisy network coding in [6]) with
quantization done at the noise level have a gap to capacity
that is linear in the number of nodes D. Here, we show that
if relays instead quantize at resolution (D − 1) times the
noise level, the gap to capacity becomes logarithmic in D.

Number the nodes s through d as 0, 1, 2, . . . , D. Let’s
consider the rate achievable by noisy network coding for
this network, assuming all relay nodes choose their transmis-
sion codebooks independently from a Gaussian distribution,
i.e. Xi ∼ CN (0, P) and independent of each other.
As described in Section II-D, the rate

min
0≤i≤D−1

(
I (Xi ; Ŷi+1|Xi+1) − I (YV i ; ŶV i |XN , ŶN \V i )

)
,

is achievable, where V i = {0, . . . , i}, and each relay chooses
Ŷi = Yi + Ẑi where Ẑi ∼ N (0, (D − 1)σ 2) independent of
everything else. Since Yi+1 = hi Xi + Zi+1, the channel from
Xi to Ŷi+1 is effectively an AWGN channel of noise power
Dσ 2 and gain hi . Then the first term in the achievable rate
expression becomes log

(
1 + |hi |2 P

Dσ 2

)
which is greater than or

equal to log
(

1 + |hi |2 P
σ 2

)
− log(D).

Due to the coarse quantization, the second term in the
achievable rate expression is reduced significantly as compared
to quantizing at the noise level. We have

I (YV i ; ŶV i |XN , ŶN \V i ) = I (ZV i ; {Z + Ẑ}V i )

= (|V i | − 1) log
(

1 + σ 2

(D − 1)σ 2

)

= i log
(

1 + 1
D − 1

)

≤ i
D − 1

≤ 1,

since i ≤ D − 1. Since the capacity of the line network is
given by the minimum of the capacities of each link:
mini log(1 + |hi |2 P), we see that decreasing the resolution
of quantization as the number of nodes increases results in a
gap of log(D) + 1 to capacity. If the quantization were done
at the noise level, the first term in the noisy network coding
achievable rate would suffer from only a log(2) decrease
instead of log(D) with respect to capacity, however the second
term would be linear in D, overall resulting in a gap to capacity
that is linear in D.

At a first glance, coarser quantization resulting in better
achievable rates might seem counter-intuitive. We discuss this
in more depth in the following section.
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Fig. 5. Example.

V. GAP TO CAPACITY WITH NOISY NETWORK CODING

In this section, we discuss the elements of the gap
between the rate achieved by noisy network coding (NNC)
and the cutset bound and identify a trade-off between
different elements of the gap. Our main result builds on the
understanding of this trade-off.

Consider an arbitrary discrete memoryless network with a
set of nodes N where a source node s wants to communicate
to a destination node d with the help of the remaining
nodes acting as relays. As stated earlier in Section II-D,
noisy network coding can achieve the rate given in (3).
Comparing this with the cutset bound on the capacity of the
network,

C = sup
p(xN )

min
$:s∈$,d∈$c

I (X$; Y$c | X$c), (10)

we observe the following differences. First, while the
maximization in (10) is over all possible input distributions,
only independent input distributions are admissible in (3).
This gap corresponds to a potential beamforming gain that
is allowed in the cutset bound but not exploited by NNC.
Second, the first term in (3) is similar to (10) but with Y$c

in (10) replaced by Ŷ$c in (3). This difference corresponds
to a rate loss due to the quantization noise introduced by
the relays. Third, there is the extra term I (Y$; Ŷ$|XN , Ŷ$c )
reducing the rate in (3). One way to potentially interpret this
term would be as the rate penalty for communicating the
quantized (compressed) observations Ŷ$ to the destination on
top of the desired message. Note that this is the rate required
to describe the observations Y$ at the distortion dictated
by Ŷ$ to a decoder that already knows (or has decoded)
XN , Ŷ$c .

However, it is not completely clear if this interpretation
is precise because the non-unique decoder employed by
NNC does not require the quantization indices to be explicitly
decoded. The non-unique decoder of NNC searches for the
unique source codeword that is jointly typical with some
(not necessarily unique) set of quantization indices at the
relays and the received signal at the destination. The following
example in Figure 5 illustrates that in certain cases the decoder
can indeed recover the transmitted message even if it can not
uniquely recover the quantization index of the relay. Even
though we focus on the extremal case where the r − d link
is zero, the discussion extends to the case where this link is
sufficiently weak.

Consider the classical relay channel with a very weak link
from the relay to the destination. Clearly, as long as the source
uses a codebook of rate less than the capacity of the direct link,
no matter what the operation at the relay is, the destination
can always decode the source message by performing a joint
typicality test between its received signal and the source
codebook (which is subsumed by the non-unique typicality
test of NNC). In particular, if the relay quantizes too finely,
then there is no way for the destination to recover the relay’s
quantization index, even though the source message can still
be recovered.

On the other hand, this example reveals the following
strange property of the expression in (3). While the above
discussion reveals that in the setup of Fig. 5, the rate achieved
by NNC is equal to the capacity of the direct link independent
of the relay’s operation (i.e. what Ŷr is), the rate in (3) is
decreasing with increasing resolution for the quantization at
the relay (due to the subtractive term I (Y$; Ŷ$|XN , Ŷ$c )).
This suggests a more careful analysis of the rate achieved
by NNC which leads to the improved rate given in (11), as
shown at the bottom of this page. Here, only those relays that
are in M ⊆ N are considered in the non-unique typicality
decoding, while the other relay transmissions are treated as
noise. For example, for the relay channel in Figure 5, this
would correspond to not considering the relay in the typicality
decoding.

It has been shown in [18] that if M∗ is the subset that
maximizes (11) for a given

∏
i∈N p(xi )p(ŷi |yi , xi ), then the

quantization indices of the relays in M∗ can be uniquely
decoded at the destination, while the quantization indices
of the relays in N \ M∗ cannot be decoded and in fact, it
is optimal to treat the transmissions from these relays as
noise. Since the transmissions from N \ M∗ are treated
as noise, the expression (11) is increased if these relays
are shut down. Hence, we can conclude that in the optimal
distribution

∏
i∈N p(xi)p(ŷi |yi , xi ) for NNC, some relays

can be off (not utilized or equivalently always quantizing
their received signals to zero) and some relays can be active,
but the quantization indices of all relays (the active
ones and trivially the inactive ones) can be uniquely
decoded at the destination. Since the quantization
indices are communicated to the destination together
with the source message, there should be a rate penalty
for communicating them which is precisely the term
I (Y$; Ŷ$|XM, Ŷ$c ).

The above discussion reveals that NNC communicates not
only the source message but also the quantization indices
to the destination despite the non-unique typicality test
performed at the decoder; and while making quantizations
finer introduces less quantization noise in the communica-
tion, it leads to a larger rate penalty for communicating
these quantization indices to the destination. This tradeoff is
made explicit in Theorem 1 which establishes the following

sup∏
i∈N p(xi )p( ŷi |yi ,xi )

sup
M⊆N

min
$⊆M:s∈$,d∈M\$

(
I (X$; Ŷ$c |X$c ) − I (Y$; Ŷ$|XM, Ŷ$c )

)
(11)
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achievable rate

C − d∗
0 log

(
1 + M

d∗
0

)
− N

Q
− d∗

Q log(Q + 1),

for any Q ≥ 0. Here, the term N
Q corresponds to the rate

penalty associated with communicating the quantization
indices and the term d∗

Q log(Q + 1) corresponds to the rate
penalty due to the quantization noise. Choosing a larger Q
increases the latter but decreases the former.

VI. PROOF OF MAIN RESULT

In this section we prove Theorem 1 by evaluating the
rate achieved by noisy network coding in (3) for a specific
choice of the distribution

∏
k∈N p(xk)p(ŷk|yk, xk) that

satisfies the power constraint. We choose the channel
input vector at each node j as X j ∼ CN (0, P I ) and Ŷk
for each receive antenna in the network is chosen such
that

Ŷk = Yk + Ẑk where Ẑk ∼ CN (0, Qσ 2), (12)

independent of everything else, for some Q ≥ 0. Then, the
achievable rate stated in (3) is given by

min
$:s∈$,d∈$c

(
I (X$; Ŷ$c |X$c) − I (Y$; Ŷ$|XN , Ŷ$c )

)
. (13)

This implies that the following rate is also achievable:

min
$:s∈$,d∈$c

I (X$; Ŷ$c |X$c)

− max
$:s∈$,d∈$c

I (Y$; Ŷ$|XN , Ŷ$c ). (14)

We first show that for the choice of the distribution
for X j ’s and Ŷk’s in (12), we have I (Y$; Ŷ$|XN , Ŷ$c ) ≤
N
Q for all cuts $ such that s ∈ $, d ∈ $c,
as follows.

I (Y$; Ŷ$|XN , Ŷ$c )

= h(Ŷ$|XN , Ŷ$c ) − h(Ŷ$|Y$, XN , Ŷ$c )
(a)= h(Ŷ$|XN , Ŷ$c ) − h(Ŷ$|Y$, XN )

≤ h(Ŷ$|XN ) − h(Ŷ$|Y$, XN )

(b)=

⎛

⎝
∑

j∈$

N j

⎞

⎠ log (Q + 1) −

⎛

⎝
∑

j∈$

N j

⎞

⎠ log (Q)

=

⎛

⎝
∑

j∈$

N j

⎞

⎠ log
(

1 + 1
Q

)

≤ N
Q

, (15)

where both (a) and (b) follow due to our specific
choice for the distribution

∏
k∈N p(xk)p(ŷk|yk, xk).

Hence,

max
$:s∈$,d∈$c

I (Y$; Ŷ$|XN , Ŷ$c ) ≤ N
Q

. (16)

We now lower bound the first term in (14). Since X$ is
chosen to be CN (0, P I ), the quantity I (X$; Ŷ$c |X$c ) is
equal to Ci.i.d .

Q ($), where Ci.i.d .
Q ($) is defined in (4). Let

$∗
Q denote the cut with minimal cut value as defined in (5).

Then,

min
$:s∈$,d∈$c

I (X$; Ŷ$c |X$c )

= min
$:s∈$,d∈$c

Ci.i.d .
Q ($)

= Ci.i.d .
Q ($∗

Q)

(a)
≥ Ci.i.d .

0 ($∗
Q) − d∗

Q log(Q + 1) (17)

(b)
≥ Ci.i.d .

0 ($∗
0) − d∗

Q log(Q + 1)

(c)
≥ sup

p(xN )
I (X$∗

0
; Y($∗

0)c | X($∗
0)

c)

− d∗
0 log

(

1 +
∑

i∈$∗
0

Mi

d∗
0

)

− d∗
Q log(Q + 1) (18)

≥ sup
p(xN )

I (X$∗
0
; Y($∗

0)c | X($∗
0)

c) − d∗
0 log

(
1 + M

d∗
0

)

− d∗
Q log(Q + 1)

= sup
p(xN )

min
$:s∈$,d∈$c

I (X$; Y$c | X$c ) − d∗
0 log

(
1 + M

d∗
0

)

− d∗
Q log(Q + 1)

= C − d∗
0 log

(
1 + M

d∗
0

)
− d∗

Q log(Q + 1), (19)

where (a) is justified by the following:

Ci.i.d .
Q ($∗

Q)

= log det
(

I + P
(Q + 1)σ 2 H$∗

Q→($∗
Q)c H†

$∗
Q→($∗

Q)c

)

≥ log det
(

I + P
σ 2 H$∗

Q→($∗
Q)c H†

$∗
Q→($∗

Q)c

)

− d∗
Q log(Q + 1)

= Ci.i.d .
0 ($∗

Q) − d∗
Q log(Q + 1), (20)

(b) follows by the definition of $∗
0 and (c) follows from

[5, Lemma 6.6] equation (144), which considers a MIMO
channel with per-antenna power constraint and bounds the
gap between its capacity and the largest achievable rate with
no spatial coding, i.e. the rate achieved by using independent
inputs at the antennas.

The proof of Theorem 1 follows from (16) and (19).
We next state an observation which will be useful in

Section VIII when we analyze the static layered network.
Remark 1: If there exists a set of cuts A such that

min
$:s∈$,d∈$c

Ci.i.d .
Q ($) ≥ min

$∈A:
s∈$,d∈$c

Ci.i.d .
Q ($) − κ

for all Q, where κ is a constant, then the gap between the
upper and the lower bound in Theorem 1 can be potentially
improved to

d̃∗
0 log

(

1 + M

d̃∗
0

)

+ N
Q

+ d̃∗
Q log(Q + 1) + κ, (21)
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RNNC = sup∏
k∈N p(xk)p( ŷk|yk ,xk)

min
$:s∈$,d∈$c

(
I (X$; Ŷ$c |X$c , H ) − I (Y$; Ŷ$|XN , Ŷ$c , H )

)
, (24)

where

d̃∗
Q ! DOF

⎛

⎜⎝ arg min
$∈A:

s∈$,d∈$c

Ci.i.d .
Q ($)

⎞

⎟⎠. (22)

This can be seen by modifying the proof of the lower
bound (19) slightly as:

min
$:s∈$,d∈$c

I (X$; Ŷ$c |X$c )

= min
$:s∈$,d∈$c

Ci.i.d .
Q ($)

≥ min
$∈A:

s∈$,d∈$c

Ci.i.d .
Q ($) − κ

≥ min
$∈A:

s∈$,d∈$c

Ci.i.d .
0 ($) − d̃∗

Q log(Q + 1) − κ

≥ C − d̃∗
0 log

(

1 + M

d̃∗
0

)

− d̃∗
Q log(Q + 1) − κ,

where each step follows by the same arguments in (19).

VII. FAST-FADING LAYERED NETWORK

In this section, we concentrate on the fast-fading layered
network defined in Section II-B and obtain an approximation
for the capacity of this network.

A. Applying Theorem 1 to the Fast-Fading Layered Network

For the fast-fading setup, we assume that the destination
knows all the instantaneous channel realizations in the network
while the source and the relay nodes only know the statistics
of the channel coefficients. We first note that under this
assumption, the cutset bound and the noisy network coding
rate can be expressed as follows.

- Cutset Bound: Noting that under the above assumption
the effective received signal at the destination can be
considered to be (Yd , H ), where H contains all the
channel realizations in the network, the cutset bound
in (1) can be written as

C = sup
p(xN )

(
min

$:s∈$,d∈$c
C($)

)
, (23)

where

C($) ! I (X$; Y$c , H |X$c)

= I (X$; Y$c |X$c , H )

since XN is independent of H .
- Noisy Network Coding: The rate achieved by noisy

network coding is given by (24), as shown at the top
of this page, where we have again used the fact that
XN is independent of H .

We now proceed to the proof of Theorem 2. We first note
that by following similar steps as in the proof of Theorem 1,
we can get the following result:

C ≥ C ≥ C − d∗
0 log

(
1 + M

d∗
0

)
− N

Q
− d∗

Q log(Q + 1),

(25)

where d∗
Q is now analogously defined as the expected degrees

of freedom of the fast-fading MIMO channel corresponding to
the cut $∗

Q that minimizes E[Ci.i.d .
Q ($)], which we express as

d∗
Q ! DOF

(

arg min
$:s∈$,d∈$c

E
[
Ci.i.d .

Q ($)
])

,

and the expectation is with respect to the randomness in
the channels. Note that when we proved Theorem 1, we
defined Ci.i.d .

Q ($) to be the first mutual information term in
the achievable rate for noisy network coding in (13) when
the input distributions X j are i.i.d. CN (0, P I ) and Ŷk’s are
chosen according to (12). In the current fast-fading case the
first mutual information term in the achievable rate for noisy
network coding in (24) is equal to E[Ci.i.d .

Q ($)] under the
same distribution for the X j ’s and Ŷk’s. Therefore, the proof
of Theorem 1 can be applied verbatim in the current case by
only modifying the definition of d∗

Q accordingly.
Now, by choosing Q to be equal to Q′ = D − 1, we get

that

C ≥ C − d∗
0 log

(
1 + M

d∗
0

)
− N

Q′ − d∗
Q ′ log(Q′ + 1)

= C − d∗
0 log

(
1 + K (D − 1)

d∗
0

)
− K (D − 1)

Q′

− d∗
Q ′ log(Q′ + 1)

(a)= C − K log
(

1 + K (D − 1)

K

)
− K (D − 1)

Q′

− K log(Q′ + 1)
(b)≥ C − K log D − K − K log D,

= C − 2K log D − K ,

where
- (a) follows from Lemma 1, provided below, which states

that d∗
Q = K for any Q ≥ 0; and

- (b) follows since Q′ = D − 1.

Thus, we have characterized the capacity of the fast-fading
layered network within a gap of 2K log D + K . The next
subsection describes how this result can be tightened to obtain
a gap equal to K log D + K , which will conclude the proof
of Theorem 2.

Lemma 1: For the fast-fading layered network, we have for
any Q ≥ 0,

min
$:s∈$,d∈$c

E
[
Ci.i.d .

Q ($)
]

= E
[
Ci.i.d .

Q (V0)
]
,
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which implies

d∗
Q = K .

Proof: See Appendix A.

B. Tightening the Approximation

The main idea in tightening the approximation is that for
the fast-fading layered network, we can get rid of the term

d∗
0 log

(
1 + M

d∗
0

)
in the gap given by Theorem 1.

Recall from the proof of Theorem 1 that this term appears
because we need to bound the difference between the capac-
ity of a MIMO channel with per-antenna power constraint
and the rate achievable by using independent inputs at
each antenna. However, for an i.i.d. Rayleigh fast-fading
MIMO channel, it is the case that independent inputs at
each node are optimal and so the largest rate achievable
by using independent inputs at each antenna is equal to the
capacity [19].

Then, the proof for obtaining equation (25) which is based
on the proof of Theorem 1 can be repeated verbatim except for

one change: in (18), the term d∗
0 log

(
1 +

∑
i∈$∗

0
Mi

d∗
0

)
can be

removed. This is valid since $∗
0 = V0 as shown by Lemma 1,

which induces an i.i.d. Rayleigh fast-fading K × K MIMO
channel. This improves the lower bound obtained in the pre-
vious subsection from C −2K log D − K to C − K log D − K .
For clarity, we present the arguments in full formality
below.

We first define, for any Q ≥ 0,

fQ(x, y) ! E
[

log det
(

I + P
(Q + 1)σ 2 Hx,yH†

x,y

)]
, (26)

where Hx,y is a x ×y matrix containing i.i.d. CN (0, 1) entries.
Note that using this notation, we have that E

[
Ci.i.d .

Q (V0)
]

is
equal to fQ(K , K ).

Using this notation, the statement of Lemma 1 is

min
$:s∈$,d∈$c

E
[
Ci.i.d .

Q ($)
]

= E
[
Ci.i.d .

Q (V0)
]

= fQ(K , K ).

(27)

Before proceeding to the proof of the lower bound, we
give the following lemma, which states that the cutset
bound defined in (23), which involves a maximization
over all possible input distributions, is equal to
min$:s∈$,d∈$c E

[
Ci.i.d .

0 ($)
]
.

Lemma 2: For the fast-fading layered network,

C = min
$:s∈$,d∈$c

E
[
Ci.i.d .

0 ($)
]
,

and hence C also equals E
[
Ci.i.d .

0 (V0)
]
= f0(K , K ).

Proof: See Appendix B.
Using the above lemma, we can now complete the proof of

the tighter lower bound via the following chain of inequalities.
Recall that X j are chosen to be i.i.d. CN (0, P I ) and Ŷk’s
are chosen according to (12). As in the previous subsection,

we set Q to be equal to Q′ = D − 1.

C
(a)
≥ min

$:s∈$,d∈$c

(
I (X$; Ŷ$c |X$c , H )

− I (Y$; Ŷ$|XN , Ŷ$c , H )
)

≥ min
$:s∈$,d∈$c

I (X$; Ŷ$c |X$c , H )

− max
$:s∈$,d∈$c

I (Y$; Ŷ$|XN , Ŷ$c , H )

(b)
≥ min

$:s∈$,d∈$c
I (X$; Ŷ$c |X$c , H ) − K (D − 1)

Q′

= min
$:s∈$,d∈$c

E
[
Ci.i.d .

Q ′ ($)
]

− K (D − 1)

Q′
(c)= fQ ′(K , K ) − K (D − 1)

Q′
(d)
≥ f0(K , K ) − K log(Q′ + 1) − K (D − 1)

Q′
(e)= C − K log(Q′ + 1) − K (D − 1)

Q′

= C − K log D − K , (28)

where
- (a) gives the rate achieved by noisy network coding,
- (b) follows since, similar to (15),

max
$:s∈$,d∈$c

I (Y$; Ŷ$|XN , Ŷ$c , H ) ≤ K (D − 1)

Q′ ,

- (c) follows from (27),
- (d) follows, similarly to (17), because

fQ ′(K , K )

= E
[

log det
(

I + P
(Q′ + 1)σ 2 HK ,K H†

K ,K

)]

≥ E
[

log det
(

I + P
σ 2 HK ,K H†

K ,K

)]

− K log(Q′ + 1)

= f0(K , K ) − K log(Q′ + 1), (29)

- (e) follows from Lemma 2. Note the difference between
this step and the corresponding step (18) in the
proof of Theorem 1. For general networks, the term

d∗
0 log

(
1 +

∑
i∈N Mi

d∗
0

)
is required, while for the special

case of fast-fading layered networks, we are able to get
rid of it.

This concludes the proof of Theorem 2.

C. Proof of Corollary 1
In this subsection, we prove that the result of Theorem 2

can be extended to the case with multiple sources. Assume
that K single-antenna sources each wish to transmit a message
at rate R

K , so that the sum-rate is R. We have, via the cutset
bound, the following upper bound on the achievable sum-
rate K :

R < sup
p(xN )

min
$ : s1,s2,...,sK ∈$,

d∈$c

I (X$; Y$c |X$c , H ).

The RHS of the above expression is equal to the cutset
bound on the achievable rate in the case of a single source
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as given in (23). Hence, we have that if a sum-rate R is
achievable, then it must satisfy

R < C .

This proves the upper bound on the sum-capacity. In the
remainder of this subsection, we focus on proving the lower
bound. As before, we fix the distribution p(xN ) to be∏

k∈N p(xk), with each term being CN (0, P). The distrib-
ution p(ŷk|yk, xk) at the relays is to be of the same form
as that in (12). From the result for multiple sources stated
in [6, Th. 1], we get that R is achievable if for all 1 ≤ k ≤ K ,
we have

k
R
K

< min
$:|{si :si ∈$}|=k,

d∈$c

(
I (X$; Y$c |X$c , H )

− I (Y$; Ŷ$|XN , Y$c , H )
)
. (30)

For a given k, the above constraint is obtained by considering
cuts $ which contain k source nodes and therefore it upper
bounds the sum rate k R/K achievable for these k sources.

Note that we get a constraint on R for each value of k, where
k ∈ {1, 2, . . . , K }. Also, note that if we consider k = K , we
get a constraint on R that is the same as (24). So, if this
were the only constraint on R, then the proof of Theorem 2 in
Section VII-B, which shows that the right-hand side of (24)
is larger than C − K log D − K , would conclude the proof of
Corollary 1. Towards this goal, we prove in Appendix C that
any k < K imposes a constraint on R that is only looser than
the constraint

R < C − K log D − K

= f0(K , K ) − K log D − K .

This concludes the proof of Corollary 1.

VIII. STATIC LAYERED NETWORKS

In this section, we prove Theorem 3. We first show that
for any Q ≥ 0, min$:s∈$,d∈$c Ci.i.d .

Q ($) can be approximated
upto an additive constant by restricting the minimization to
cuts in a particular class. Then, Theorem 3 is proved by
making use of Remark 1.

For convenience, let HVi→Vi+1 denote the matrix in CK×K

containing channel gains from nodes in layer i to nodes in
layer i + 1, and call the K 2 entries in HVi→Vi+1 as the links
in layer i . With this convention in mind, let A denote the set
of cuts $ for which the links crossing from $ to $c come
from at most K − 1 layers, e.g. see Figure 6.

Fig. 6. The cut $ depicted here /∈ A since the crossing links come
from 4 layers, and 4 > K − 1 = 2.

Lemma 3: For the static layered network in Section II-C,
we have, for any Q ≥ 0,

min
$:s∈$,d∈$c

Ci.i.d .
Q ($) ≤ min

$∈A:
s∈$,d∈$c

Ci.i.d .
Q ($),

and

min
$:s∈$,d∈$c

Ci.i.d .
Q ($) ≥ min

$∈A:
s∈$,d∈$c

Ci.i.d .
Q ($) − K log K .

Proof: The upper bound is immediate. The lower bound
can be proved by noting that the chain of inequalities given
on bottom of this page, holds for any cut $ /∈ A, where
(a) follows since for any cut /∈ A, at least K terms in the
summation are non-zero and each of these terms can be lower-
bounded by the AWGN capacity of a point-to-point channel
between a single transmit and single receive antenna with unit
magnitude channel coefficient; and (b) follows by Lemma 4
which is stated and proved below. This concludes the proof of
the lemma.

Lemma 4: For the static layered network in Section II-C,
we have, for any Q ≥ 0,

Ci.i.d .
Q (V0) ≤ K log

(
1 + P

(Q + 1)σ 2

)
+ K log K .

Proof:

Ci.i.d .
Q (V0) = log det

(
I + P

(Q + 1)σ 2 HV0→V1H†
V0→V1

)

(a)≤
K∑

i=1

log
(

1 + P
(Q + 1)σ 2 hi h

†
i

)

(b)=
K∑

i=1

log
(

1 + P
(Q + 1)σ 2 K

)

≤ K log
(

1 + P
(Q + 1)σ 2

)
+ K log K ,

Ci.i.d .
Q ($) =

D−1∑

i=0

log det
(

I + P
(Q + 1)σ 2 H(Vi∩$)→(Vi+1∩$c)H

†
(Vi∩$)→(Vi+1∩$c)

)

(a)≥ K log
(

1 + P
(Q + 1)σ 2

)

(b)≥ Ci.i.d .
Q (V0) − K log K

≥ min
$∈A:

s∈$,d∈$c

Ci.i.d .
Q ($) − K log K
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where hi denotes the i th row of HV0→V1 and (a) follows by
using Hadamard’s inequality and (b) follows from the fact that
the channel gains have unit magnitude.

We now use the observation made in Remark 1 to prove
Theorem 3. As in the previous section, first note that
M = N = K (D − 1). Then, we note that for any cut $ in A,
the matrix H$→$c can have at most K (K − 1) columns.
This is because the links crossing from $ to $c come from
at most K − 1 layers, hence there can be at most K (K − 1)
nodes in $ from which the crossing links originate. Hence,
a trivial upper bound on d̃∗

Q (defined in (22)) for any Q is

d̃∗
Q ≤ K (K − 1) ≤ K 2. (31)

Now, we set Q to be Q′ = D − 1 and use the result in (21)
to prove Theorem 3 as follows:

C ≥ C − d̃∗
0 log

(

1 + M

d̃∗
0

)

− N
Q′ − d̃∗

Q ′ log(Q′ + 1) − κ

(a)
≥ C − d̃∗

0 log

(

1 + M

d̃∗
0

)

− N
Q′ − d̃∗

Q ′ log(Q′ + 1)

− K log K
(b)≥ C − K 2 log

(
1 + K (D − 1)

K 2

)
− K (D − 1)

Q′

− K 2 log(Q′ + 1) − K log K
(c)= C − K 2 log

(
1 + D − 1

K

)
− K − K 2 log D

− K log K

≥ C − 2K 2 log D − K log K − K ,

where (a) follows by Lemma 3, (b) follows from (31) and the
fact that x log(1 + M/x) is an increasing function of x , and
(c) follows since Q′ = D − 1. This concludes the proof of
Theorem 3.

IX. CONCLUDING REMARKS

In this paper, we have developed improved capacity
approximations for Gaussian relay networks. While existing
approximations bound the capacity gap only in terms of the
total number of nodes in the network, we have developed a
refined approximation for the capacity of general Gaussian
relay networks where the gap depends not only on the total
number of nodes but other structural properties of the network
(the degrees of freedom of the mincut). We have shown that
this refined result allows to better approximate the capacity of
many Gaussian networks, some classes of layered networks
in particular.

The improvement comes from carefully exploiting a
trade-off inherent to compress-and-forward based strategies.
When relays quantize/compress signals very finely, little
quantization noise is introduced to the communication. When
relays quantize/compress signals coarsely, there is a smaller
rate penalty associated with communicating these quantization
indices to the destination. We have shown that this trade-off
can be very much in favor of coarse quantization, leading to
the counter-intuitive principle of quantizing signals more and
more coarsely with increasing number of relaying stages.

APPENDIX A
PROOF OF LEMMA 1

Proof: By the definition of Ci.i.d .
Q ($),

E
[
Ci.i.d .

Q ($)
]

= E
[

log det
(

I + P
(Q + 1)σ 2 H$→$c H†

$→$c

)]
.

We first note that for any cut $ in the set
{V0,V1, . . . ,VD−1}, the statistics of H$→$c are identical.
Hence, the value of E

[
Ci.i.d .

Q ($)
]

is the same for all these

cuts and we use V0 as a representative.
We now prove the statement: For any Q ≥ 0,

min
$:s∈$,d∈$c

E
[
Ci.i.d .

Q ($)
]

= E
[
Ci.i.d .

Q (V0)
]
. (32)

The proof of the “≤” direction of the inequality, i.e.

min
$:s∈$,d∈$c

E
[
Ci.i.d .

Q ($)
]

≤ E
[
Ci.i.d .

Q (V0)
]

is immediate. We focus on proving the inequality in the other
direction in the remainder of this proof.

Consider a cut $ that contains M1 nodes from V1, M2
from V2 and so on until MD−1 from VD−1 (see Figure 6).

Then E
[
Ci.i.d .

Q ($)
]

is given by

E
[

log det
(

I + P
(Q + 1)σ 2 H$→$c H†

$→$c

)]
,

where H$→$c is a block diagonal matrix containing blocks of
size Mc

1 -by-K , Mc
2 -by-M1, Mc

3 -by-M2, . . . , Mc
D−1-by-MD−2

and finally K -by-MD−1. In the preceding sentence, we have
abused notation slightly by using Mc

i to mean |Vi | − Mi =
K − Mi .

Since H$→$c has a block diagonal structure, E
[
Ci.i.d .

Q ($)
]

breaks down into a sum of terms, each being a function of the
number of nodes in $ that belong to two adjacent layers. Thus,

E
[
Ci.i.d .

Q ($)
]

= E
[

log det
(

I + P
(Q + 1)σ 2 H$→$c H†

$→$c

)]

= fQ(Mc
1 , K ) + fQ(Mc

2 , M1)
+ · · · + fQ(Mc

D−1, MD−2) + fQ(K , MD−1), (33)

where fQ(x, y) is defined as in (26):

fQ(x, y) ! E
[

log det
(

I + P
(Q + 1)σ 2 Hx,yH†

x,y

)]
,

and Hx,y is a x × y matrix containing i.i.d. CN (0, 1) entries.
Note that using this notation, E

[
Ci.i.d .

Q (V0)
]

is equal to
fQ(K , K ). So, our aim is to show that for any cut $, the
quantity appearing in (33) is no less than fQ(K , K ).

To accomplish this, we note the following properties of the
function fQ(x, y):

a) fQ(x, y) = fQ (y, x).
b) fQ(z, y) ≥ fQ(x, y) if z ≥ x .
c) fQ(x, y) + fQ(K − x, y) ≥ fQ(K , y).
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The first two properties are straightforward and the third
property follows via a simple application of Hadamard’s
inequality.

Proving that the quantity in (33) is no less than fQ (K , K ) is
just a matter of applying these properties multiple times. For
concreteness, we show this for the case D = 4 below, which
can be generalized in a straightforward fashion to higher values
of D.

fQ(Mc
1 , K ) + fQ(Mc

2 , M1) + fQ(Mc
3 , M2) + fQ(K , M3)

≥ fQ(Mc
1 , K ) + fQ(Mc

2 , M1)

+ fQ (Mc
3 , M2) + fQ(M2, M3)

≥ fQ(Mc
1 , K ) + fQ(Mc

2 , M1) + fQ (K , M2)

≥ fQ(Mc
1 , K ) + fQ(Mc

2 , M1) + fQ (M1, M2)

≥ fQ(Mc
1 , K ) + fQ(K , M1)

≥ fQ(K , K )

= E
[
Ci.i.d .

Q (V0)
]
, (34)

where the first inequality follows by applying property (b) to
the last term in the first line, the second inequality follows by
applying (c) to the last two terms in the earlier line etc. Since
this is true for any cut $, we have shown that

min
$:s∈$,d∈$c

E
[
Ci.i.d .

Q ($)
]

≥ E
[
Ci.i.d .

Q (V0)
]
. (35)

Thus, we have shown that (32) is true, i.e.

min
$:s∈$,d∈$c

E
[
Ci.i.d .

Q ($)
]

= E
[
Ci.i.d .

Q (V0)
]

= fQ(K , K ),

(36)

which implies that V0 ∈ arg min$:s∈$,d∈$c E
[
Ci.i.d .

Q ($)
]
.

This further implies that

d∗
Q = K ,

since the DOF of the fast-fading MIMO channel corresponding
to V0 is K .

APPENDIX B
PROOF OF LEMMA 2

Starting from (23), we have

C = sup
p(xN )

(
min

$:s∈$,d∈$c
C($)

)

= sup
p(xN )

(
min

$:s∈$,d∈$c
I (X$; Y$c |X$c , H )

)

≤ sup
p(xN )

(
I (XV0 ; YV0|X(V0)c , H )

)

(a)= E
[

log det
(

I + P
σ 2 HV0→(V0)c H†

V0→(V0)c

)]

= E
[
Ci.i.d .

0 (V0)
]

(b)= min
$:s∈$,d∈$c

E
[
Ci.i.d .

0 ($)
]

≤ sup
p(xN )

(
min

$:s∈$,d∈$c
I (X$; Y$c |X$c , H )

)

= C,

where (a) follows by the fact that for a i.i.d. Rayleigh
fast-fading MIMO channel, the optimal input distribution is
independent across antennas [19], and (b) follows from (32)
which shows that the cut that minimizes E

[
Ci.i.d .

0 ($)
]

is V0.

APPENDIX C

In this appendix, we elaborate on the argument required to
prove the lower bound in Corollary 1.

Consider a cut $ such that |{si : si ∈ $}| = k. Let $ contain
Mi nodes from layer Vi , for 1 ≤ i ≤ D − 1. As before, we
choose the quantization noise variance Q to be Q′ = D − 1.
This gives us a constraint on the achievable sum-rate R as
follows:

R <
K
k

(
I (X$; Ŷ$c |X$c , H ) − I (Y$; Ŷ$|XN , Ŷ$c , H )

)

= K
k

(
E

[
Ci.i.d .

Q ′ ($)
]

− I (Y$; Ŷ$|XN , Ŷ$c , H )
)

= K
k

(
fQ ′(Mc

1 , k) + fQ ′(Mc
2 , M1) + · · · + fQ ′(K , MD−1)

− I (Y$; Ŷ$|XN , Ŷ$c , H )
)
,

where we use the notation fQ(x, y) defined in (26). Since we
have

I (Y$; Ŷ$|XN , Ŷ$c , H ) ≤
∑D−1

i=1 Mi

Q′ =
∑D−1

i=1 Mi

D − 1
,

which can be proved using steps similar to those used to arrive
at (15), we can impose a tighter constraint on the sum-rate R
due to the cut $, which is as follows.

R <
K
k

(
fQ ′(Mc

1 , k) + fQ ′(Mc
2 , M1)

+ · · · + fQ ′(K , MD−1) −
∑D−1

i=1 Mi

D − 1

)
. (37)

In the following, we show for any k < K , the above is
weaker than

R < f0(K , K ) − K log D − K , (38)

i.e. the right-hand side of (37) for any k < K is larger than
f0(K , K ) − K log D − K .

Note that if f0(K , K ) − K log D − K ≤ 0, the achievable
rate claimed by (38) is zero so there is nothing to prove, so we
assume that f0(K , K ) − K log D − K > 0.

• If the cut $ has M1 = M2 = · · · = MD−1 = 0, then the
expression in the constraint (37) becomes

K
k

(
fQ ′(Mc

1 , k) + fQ ′(Mc
2 , M1)

+ · · · + fQ ′(K , MD−1) −
∑D−1

i=1 Mi

D − 1

)

= K
k

fQ ′(K , k)

(a)
≥ fQ ′(K , K )

≥ fQ ′(K , K ) − K
(b)
≥ f0(K , K ) − K log D − K ,
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1

k
(K

k

)
∑

1≤i1<···<ik ≤K

log det
(
πe

(
Ik + λ H†

l,(i1,...,ik )Hl,(i1,...,ik )

))
≥ 1

K
log det

(
πe

(
IK + λ H†

l,K Hl,K

))

where (a) follows from Claim 1, provided at the end of
this Appendix, and (b) follows by the same argument as
in (29).

• If the cut is $ such that Mi = K for some i ∈
{1, 2, . . . , K }, then

K
k

(
fQ ′(Mc

1 , k) + fQ ′(Mc
2 , M1)

+ · · · + fQ ′(K , MD−1) −
∑D−1

i=1 Mi

D − 1

)

(a)
≥ K

k

(

fQ ′(K , K ) −
∑D−1

i=1 Mi

D − 1

)

≥ K
k

(
fQ ′(K , K ) − K

)

(b)
≥ fQ ′(K , K ) − K

≥ f0(K , K ) − K log D − K ,

where (a) follows by using the properties of the function
fQ as in (34), and (b) follows since K

k ≥ 1.
• Let i∗ = arg max1≤i≤D−1 Mi so that Mi∗ =

max1≤i≤D−1 Mi . From the previous two cases, we can
focus our attention to 0 < Mi∗ < K . Also, note that
M1 < K implies that Mc

1 > 0. The RHS of the constraint
due to $ is
K
k

(
fQ ′(Mc

1 , k) + fQ ′(Mc
2 , M1)

+ · · · + fQ ′(K , MD−1) −
∑D−1

i=1 Mi

D − 1

)

= K
k

fQ ′(Mc
1 , k) + K

k

×
(

fQ ′(Mc
2 , M1)+ . . .+ fQ ′(K , MD−1)−

∑D−1
i=1 Mi

D − 1

)

(a)
≥ fQ ′(Mc

1 , K ) + K
k

×
(

fQ ′(Mc
2 , M1)+ . . .+ fQ ′(K , MD−1)−

∑D−1
i=1 Mi

D − 1

)

(b)
≥ fQ ′(Mc

1 , K )

+
(

fQ ′(Mc
2 , M1)+ . . .+ fQ ′(K , MD−1)−

∑D−1
i=1 Mi

D − 1

)

(c)≥ fQ ′(K , K ) − K

≥ f0(K , K ) − K log D − K ,

where
- (a) follows by Claim 1,
- (b) follows because K

k ≥ 1 and because

fQ ′(Mc
2 , M1) + · · · + fQ ′(K , MD−1) −

∑D−1
i=1 Mi

D − 1
,

is non-negative, which is proved as follows:

fQ ′(Mc
2 , M1) + · · · + fQ ′(K , MD−1) −

∑D−1
i=1 Mi

D − 1

≥ fQ ′(K , Mi∗ ) −
∑D−1

i=1 Mi

D − 1
≥ fQ ′(K , Mi∗ ) − Mi∗

≥ Mi∗

K
fQ ′(K , K ) − Mi∗

= Mi∗

K

(
fQ ′(K , K ) − K

)

≥ Mi∗

K
( f0(K , K ) − K log D − K )

≥ 0,

- (c) follows by noting that the expression in (b) is
the constraint on sum-rate imposed by a cut which
is V0 ∪ $, which we know is lower bounded by
fQ ′(K , K ) − K .

The above analysis shows that (38) renders all other
constraints redundant.

Claim 1: For any Q ≥ 0, any k ∈ {1, 2, . . . , K − 1} and
any l ∈ {1, 2, . . . , K },

K
k

fQ(l, k) ≥ fQ(l, K ).

Proof: Recall that fQ(l, K ) is defined to be

E
[

log det
(

I + P
(Q + 1)σ 2 H†

l,K Hl,K

)]
.

To be more explicit in the following, we write Ip to denote
an identity matrix of size p. Also, for brevity, we denote

P
(Q+1)σ 2 by λ. For any fixed Hl,K , we have by [20, eq. (3.15)]
the inequality given at the top of this page, where Hl,(i1,...,ik )

is obtained by choosing the columns of Hl,K indexed by
(i1, . . . , ik).

Hence,

1

k
(K

k

)
∑

1≤i1<···<ik≤K

log det
(

Ik + λ H†
l,(i1,...,ik )Hl,(i1,...,ik )

)

+ 1
k

log
(
(πe)k)

≥ 1
K

log
(
(πe)K )

+ 1
K

log det
(

IK + λ H†
l,K Hl,K

)
,

which means
1

k
(K

k

)
∑

1≤i1<···<ik ≤K

log det
(

I + λ H†
l,(i1,...,ik )Hl,(i1,...,ik )

)

≥ 1
K

log det
(

I + λ H†
l,K Hl,K

)
.

Now, taking expectation on both sides and observing that
each term in the summation has identical statistics, the desired
claim is proved.
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