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ABSTRACT only its captured values. Moreover, our method can operate
recursively, requiring the storage of only a constant number
of values per pixel independent of the number of images cap-
tured. These modest computational and storage requirements
make it feasible to integrate all the processing and memory
needed with the image sensor on the same CMOS chip [5].

In the next section we briefly describe the image sensor
pixel operation and statistical model. In Section 3 we present
our algorithm. Simulation results are presented in Section 4.

Advances in CMOS image sensors enable fast image cap-
ture, which makes it possible to capture multiple images within
a normal exposure time. An algorithm that takes advantage of
this capability by simultaneously constructing a high dynam-
ic range image and performing motion blur restoration from
multiple image captures is described. The algorithm compris-
es two main procedures — photocurrent estimation and mo-
tion/saturation detection. It operates completely locally — each
pixel’s final value is computed using only its captured values,
and recursively, requiring the storage of only a constant num- 2. PIXEL OPERATION AND MODEL
ber of values per pixel independent of the number of images
captured. These modest computational and storage requireThe area image sensor used in an analog or digital camera con-
ments make it feasible to integrate all needed memory and pro-sists of a 2-D array of pixels. During capture each pixel con-
cessing with the image sensor on a single CMOS chip. Simu- verts incident light into photocurren (¢), for0 < ¢ < T,
lation results demonstrate the enhanced SNR, dynamic rangeyhereT’ is the exposure time. This process is quite linear, and
and the motion blur restoration obtained using our algorithm. thusi,, (t) is a good measure of incident light intensity. Since
the photocurrent is too small to measure directly, it is integrat-
ed onto a capacitor and the char@éT") (or voltage) is read
out at the end of exposure timé Dark currentiz. and ad-
Blurring due to object or camera motion during image cap- ditive noise corrupt the output signal charge. The noise can
ture can cause substantial degradation in image quality. As abe expressed as the sum of three independent components, (i)

result, a great deal of research has been conducted on develogihot noiseU (T') ~ N(0,¢ foT(iph(t) + i4c)dt), whereq is

ing methods for restoring motion blurred images,, see [1].  the electron charge, (ii) readout circuit no€’) (including
These methods make certain assumptions on the blurring pro-guantization noise) with zero mean and variaa¢e and (i)
cess, the ideal image, and the noise. Various image processingeset noiseC' ~ N (0,0¢) caused by resetting the capacitor
techniques are then used to identify the blur and restore theprior to capture. Thus the output charge from a pixel can be
image. However, due to the lack of sufficient knowledge of €xpressed as

the blurring process and the ideal image, the developed image
blur restoration methods have limited applicability and their
computational burden can be quite substantial.

Recent advances in CMOS image sensor technology en-
able digital high speed capture up to thousands of frames perprovided Q(T) < Qsa:, the saturation charge, also referred
second [2, 3]. This benefits traditional high speed imaging to aswell capacity. If photocurrent is constant over exposure
applications and enables new imaging enhancement capabilitime, SNR can be expressed as
ties such as multiple capture for increasing the sensor dynam-
ic range [4]. In this scheme, multiple images are captured Sy (ipnT)?
at different times _Within the normal ‘exposure time. Short- SNR(ipn) = 1010g, q(iph +iac)T + o + 0, )
er exposure time images capture brighter areas of the scene,
while longer exposure time images capture darker areas of theNote that SNR increases with,, first at 20dB per decade
scene. The images are then combined into a single high dy-when reset and readout noise variance dominates, and then at
namic range image. 10dB per decade when shot noise variance dominates. SNR

In this paper we propose to use this multiple capture ca- also increases witl". Thus it is always preferred to have the
pability to simultaneously form a high dynamic range image longest possible exposure time. Saturation and change in pho-
and reduce or eliminate motion blur. Our algorithm operates tocurrent due to motion, however, makes it impractical to make
completely locally — each pixel's final value is computed using exposure time too long.

1. INTRODUCTION

Qr) = / (i () + i)t + U(T) + V(T) +C, (1)




We illustrate the effect of saturation and motion and how
multiple capture may mitigate their effects via the examples in
Figures 1 and 2. The first plot in Figure 1 represents the case of
a constant low light, where photocurrent can be well estimated
from Q(T'). The second plot represents the case of a constant
high light, whereQ(T') = Qs4: and the photocurrent cannot
be well estimated frond)(7"). The third plot is for the case
when light changes during exposure tirag,, due to motion.

In this case, photocurrent at the beginning of exposure time
ipr (0) again cannot be well estimated frag(7).
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Figure 2: (a) Ideal image. (b) Long exposure time image. (c)
@sat 7777772 Short exposure time image. (d) Image produced by applying
our algorithm to 4 captures.
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Q) 3. IMAGE FORMATION AND BLUR RESTORATION
Qsat 777777777 Our image formation and motion blur restoration algorithm
h : operates om image captures at 27, . .. = T as follows:
o ! | Light changing p -g _ p al2r,...,n7
! | ! ! 1. Capture firstimage, sét= 1.
T 2r 31 T t 2. For each pixel: Use thaurrent estimation algorithmto

. I . find the photocurrent estimafe from .
Figure 1:Q(t) vs. t for three lighting conditions. P € @)

3. Capture next image.
4. For each pixel: Use thmotion detection algorithm to
To avoid saturation and the changeigf(¢) due to mo- check if motion/saturation has occurred

tion, exposure time may be shortenedy., to 7 in Figure 1.

- 4 . - L i. Motion detected: Set final photocurrent estimate
Since in conventional sensor operation, exposure time is set N -

globally for all pixels, this results in reduction of SNR, espe- I = Iy.

cially for pixels with low light. This point is further demon- ii. No Motion detected or decision deferred: Use the
strated by the images in Figure 2, where a bright square object current estimation algorithm to find I;4; from
moves diagonally across a dark background. If exposure time Q((k+ 1)) andl;, and sek = k + 1.

is set long to achieve high SNR, it results in significant motion .

blur as shown in image (b) of Figure 2. On the other hand if 5. Repeat stepsand4 until k = n.

exposure time is set short, SNR deteriorates resulting in theIn the following subsection we describe a recursive algorithm

noisy image (c) of Figure 2. for estimating photocurrent, and in subsection 3.2 we describe
Recent advances in CMOS image sensor technology make& heuristic algorithm for performing motion detection.

it possible to capture and nondestructively read oet,with-

out reset, multiple images within a normal exposure time [4]. 31 Photocurrent Estimation

Using this multiple capture capability one can in effect adapt

the pixel exposure time to the lighting condition. For the ex- We simplify the derivations by neglecting dark current and re-

amples in Figure 1, if we capture four imagesrat2r, 37, set noise. A detailed derivation of the estimation algorithm

andT = 4r, the photocurrent for the high light pixel can be With reset noise included is presented in [6]. We also assume

estimated using the images captured and2r, while for the here that each pixel's photocurrents constant. In the fol-

low light pixel can be estimated using the four images. Mo- lowing subsection we deal with the case when photocurrent

tion blur in the third case can be reduced by using the four changes during capture due to motion. Assumingjxel val-

captures to estimate photocurrent at the beginning of exposureles captured at, 27, ...,nT = T, the kth output charge is

time i, (0). In the following section we derive an optimal ~ given by

recursive pixel photocurrent estimator from multiple captures

and show how motion blur can be detected and reduced. Image .

(d) in Figure 2 of the moving square object is produced using Qr = k7 + Z Uj + Vi, for1 <k <m, ®3)

four captures and the algorithm described in the next section. J=1

k



whereV, is the readout noise of thgh capture[J; is the shot
noise generated during time intery@j — 1), j7], andV;, and
theU;s are all zero mean and independent, with

E(V?) 0% >0, for1 <k<n,

E(U}) = gqir, for1 <j<k. @
Define
= Qr E]'Cfl Ui W
==+ == — 4+ Z for1<k<n. (5
kT kT kT

At time k7, we wish to find the best linear unbiased MSE es-

timate of the parametergiven {I,, I», ..., I}, i.e, coeffi-

cientsai, as, ..., ax such that
1 k
L= =Y ol (©)

wheregy, = Z;‘f:l a;, minimizes
o = B(I, —i)*, @
subject to
E(I}) = .

In recursive form, after théth capture, thék + 1)st optimal
estimate can be written as

L = I . . (8)
Iiyw = I+ hiep1 (T — In),
where the gairhy1 is given by
a
hipy = ——, ©)
gk + k+1
and thea,, coefficients are given by
al = 1 )
apr = (k+ DO+ %+ Gy, (30
\4
wherew;, = E;“:l =

The MSE error®? can also be expressed in a recursive

form as
. 2
.
By = B+ o (Qarige +ady) i
+ Irt1 Irt1 +1/ (k+1)7
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Figure 3: SNR vs. image indéxwith and without estimation.

3.2. Motion/Saturation Detection

The derivation of the recursive linear estimation algorithm in
the previous section assumed th@j is constant and that sat-
uration does not occur befoke-. In this section we describe
an algorithm for detecting change in the value:i@f) due to
motion or saturation before the new image is used to update
the photocurrent estimate. Since the statistics of the noise are
not completely known and no motion model is specified, it is
not possible to derive an optimal detection algorithm. Our al-
gorithm is, therefore, based on heuristics. By performing the
detection step prior to each estimation step we form a blur free
high dynamic range image from tlecaptured images.

The algorithm operates on each pixel separately. After the
kth capture, the best MSE linear estimate',cfﬁc, and its MSE,
&}, are computed as detailed in the previous subsection. If the
current stays constant, the next observal‘lgffi1 would be

k+1gr
e — 4 L=V | Ve (12)
e k+Dr * (k+1)7

and the best predictor dt”", is I, with the prediction MSE
given by

Aiy = E((J - 1)°|)
— (§2 _ qik + UZV (13)
- k (k+1)r (k+1)272"

Thus to decide whether the input signahanged between

time k7 and (k + 1)7, we compard.+; = (f_’;—Jlr)lT with I,
A simple decision rule would be to declare that motion has
occurred if

T — x| > mAgy1, (14)

and to usd, as the final estimate af otherwise to uséy 41

to update the estimate ofi.e., I4+1. The constanin > 0 is
chosen to achieve the desired tradeoff between SNR and mo-
tion blur. The highern the more motion blur if changes with
time, but also the higher the SNRiifis a constant, and vice

Note that computing the coefficients and the MSE require knowlversa.

edge ofi, which is not known. To solve this problem we re-

One potential problem with this “hard” decision rule is that

placei by its latest estimate. This, of course, makes the esti- gradual drift ini can cause accumulation of estimation error

mator suboptimal. Figure 3 shows tHatimproves SNR over

resulting in undesired motion blur. To address this problem

I}, by around6dB at low light, when readout noise dominates. we propose the following “soft” decision rule.
The SNR improvement is not significant at high light where Motion detection algorithm: For each pixel, after thet + 1)st

shot noise dominates.

capture:



1. If|Iys1 — Ix| < m1Ag,, then declare thato motion
detected. Usel;; to updatel;; and setLt = 0,
L™ =0.

2. W[ Ty1 =T > malyir, LY = linaw, OFL™ = lipaa,
then declare thatotion detected. Usel; as the final
estimate of.

3. If mlAk+1 < I~k+1 — fk < m2Ak+1, thendefer the
decisonand setL™ = Lt +1, L™ = 0.

4. 1f —maApyr < ik+1 — fk < —m1Ag41, thendefer
thedecisonandset,” =L~ +1,LT = 0.

The counterd.t, L~ record the number of times the decision
is deferred, an@l < m1 < ms andl,,.. are chosen to tradeoff
SNR with motion blur.

4. SIMULATION RESULT

Figure 4 plots SNR versudor conventional sensor operation,
where the last samplg, is used, and using our estimation al-
gorithm. Note that using our algorithm, SNR is consistently
higher, due to the reduction in read noise. The improvement

is most pronounced at low light. More significantly the sensor gigyre 5: (a) First frame, (b) Last frame, (c) Simulation of the

dynamic range defined as the ratio of the largest signal image generated by a conventional sensor. (d) Image generated
to the smallest detectable signal;,, is increased. Assuming  y applying our algorithm.

conventional sensor operatiopa. = <t andimin = %%,

which using the sensor parameters of the example in Figure 4

yields dynamic range of7.4dB. Using our algorithm dynam-

ic range is extended &5.5dB — increasing0.1dB at the high 5. ACKNOWLEDGMENT
light end andBdB at the low light end.
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