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ABSTRACT

Advances in CMOS image sensors enable fast image cap-
ture, which makes it possible to capture multiple images within
a normal exposure time. An algorithm that takes advantage of
this capability by simultaneously constructing a high dynam-
ic range image and performing motion blur restoration from
multiple image captures is described. The algorithm compris-
es two main procedures – photocurrent estimation and mo-
tion/saturation detection. It operates completely locally – each
pixel’s final value is computed using only its captured values,
and recursively, requiring the storage of only a constant num-
ber of values per pixel independent of the number of images
captured. These modest computational and storage require-
ments make it feasible to integrate all needed memory and pro-
cessing with the image sensor on a single CMOS chip. Simu-
lation results demonstrate the enhanced SNR, dynamic range,
and the motion blur restoration obtained using our algorithm.

1. INTRODUCTION

Blurring due to object or camera motion during image cap-
ture can cause substantial degradation in image quality. As a
result, a great deal of research has been conducted on develop-
ing methods for restoring motion blurred images,e.g., see [1].
These methods make certain assumptions on the blurring pro-
cess, the ideal image, and the noise. Various image processing
techniques are then used to identify the blur and restore the
image. However, due to the lack of sufficient knowledge of
the blurring process and the ideal image, the developed image
blur restoration methods have limited applicability and their
computational burden can be quite substantial.

Recent advances in CMOS image sensor technology en-
able digital high speed capture up to thousands of frames per
second [2, 3]. This benefits traditional high speed imaging
applications and enables new imaging enhancement capabili-
ties such as multiple capture for increasing the sensor dynam-
ic range [4]. In this scheme, multiple images are captured
at different times within the normal exposure time. Short-
er exposure time images capture brighter areas of the scene,
while longer exposure time images capture darker areas of the
scene. The images are then combined into a single high dy-
namic range image.

In this paper we propose to use this multiple capture ca-
pability to simultaneously form a high dynamic range image
and reduce or eliminate motion blur. Our algorithm operates
completely locally – each pixel’s final value is computed using

only its captured values. Moreover, our method can operate
recursively, requiring the storage of only a constant number
of values per pixel independent of the number of images cap-
tured. These modest computational and storage requirements
make it feasible to integrate all the processing and memory
needed with the image sensor on the same CMOS chip [5].

In the next section we briefly describe the image sensor
pixel operation and statistical model. In Section 3 we present
our algorithm. Simulation results are presented in Section 4.

2. PIXEL OPERATION AND MODEL

The area image sensor used in an analog or digital camera con-
sists of a 2-D array of pixels. During capture each pixel con-
verts incident light into photocurrentiph(t), for 0 � t � T ,
whereT is the exposure time. This process is quite linear, and
thusiph(t) is a good measure of incident light intensity. Since
the photocurrent is too small to measure directly, it is integrat-
ed onto a capacitor and the chargeQ(T ) (or voltage) is read
out at the end of exposure timeT . Dark currentidc and ad-
ditive noise corrupt the output signal charge. The noise can
be expressed as the sum of three independent components, (i)
shot noiseU(T ) � N (0; q

R
T

0
(iph(t) + idc)dt), whereq is

the electron charge, (ii) readout circuit noiseV (T ) (including
quantization noise) with zero mean and variance�2V , and (iii)
reset noiseC � N (0; �2C) caused by resetting the capacitor
prior to capture. Thus the output charge from a pixel can be
expressed as

Q(T ) =

Z
T

0

(iph(t) + idc)dt+ U(T ) + V (T ) + C; (1)

providedQ(T ) � Qsat, the saturation charge, also referred
to aswell capacity. If photocurrent is constant over exposure
time, SNR can be expressed as

SNR(iph) = 10 log10
(iphT )

2

q(iph + idc)T + �2
V
+ �2

C

(2)

Note that SNR increases withiph, first at 20dB per decade
when reset and readout noise variance dominates, and then at
10dB per decade when shot noise variance dominates. SNR
also increases withT . Thus it is always preferred to have the
longest possible exposure time. Saturation and change in pho-
tocurrent due to motion, however, makes it impractical to make
exposure time too long.



We illustrate the effect of saturation and motion and how
multiple capture may mitigate their effects via the examples in
Figures 1 and 2. The first plot in Figure 1 represents the case of
a constant low light, where photocurrent can be well estimated
fromQ(T ). The second plot represents the case of a constant
high light, whereQ(T ) = Qsat and the photocurrent cannot
be well estimated fromQ(T ). The third plot is for the case
when light changes during exposure time,e.g., due to motion.
In this case, photocurrent at the beginning of exposure time
iph(0) again cannot be well estimated fromQ(T ).
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Figure 1:Q(t) vs. t for three lighting conditions.

To avoid saturation and the change ofiph(t) due to mo-
tion, exposure time may be shortened,e.g., to � in Figure 1.
Since in conventional sensor operation, exposure time is set
globally for all pixels, this results in reduction of SNR, espe-
cially for pixels with low light. This point is further demon-
strated by the images in Figure 2, where a bright square object
moves diagonally across a dark background. If exposure time
is set long to achieve high SNR, it results in significant motion
blur as shown in image (b) of Figure 2. On the other hand if
exposure time is set short, SNR deteriorates resulting in the
noisy image (c) of Figure 2.

Recent advances in CMOS image sensor technology makes
it possible to capture and nondestructively read out,i.e., with-
out reset, multiple images within a normal exposure time [4].
Using this multiple capture capability one can in effect adapt
the pixel exposure time to the lighting condition. For the ex-
amples in Figure 1, if we capture four images at� , 2� , 3� ,
andT = 4� , the photocurrent for the high light pixel can be
estimated using the images captured at� and2� , while for the
low light pixel can be estimated using the four images. Mo-
tion blur in the third case can be reduced by using the four
captures to estimate photocurrent at the beginning of exposure
time iph(0). In the following section we derive an optimal
recursive pixel photocurrent estimator from multiple captures
and show how motion blur can be detected and reduced. Image
(d) in Figure 2 of the moving square object is produced using
four captures and the algorithm described in the next section.

(a) (b)

(c) (d)

Figure 2: (a) Ideal image. (b) Long exposure time image. (c)
Short exposure time image. (d) Image produced by applying
our algorithm to 4 captures.

3. IMAGE FORMATION AND BLUR RESTORATION

Our image formation and motion blur restoration algorithm
operates onn image captures at�; 2�; : : : ; n� = T as follows:

1. Capture first image, setk = 1.

2. For each pixel: Use thecurrent estimation algorithm to
find the photocurrent estimatêI1 fromQ(�).

3. Capture next image.

4. For each pixel: Use themotion detection algorithm to
check if motion/saturation has occurred

i. Motion detected: Set final photocurrent estimate
În = Îk.

ii. No Motion detected or decision deferred: Use the
current estimation algorithm to find Îk+1 from
Q((k+ 1)�) andÎk and setk = k + 1.

5. Repeat steps3 and4 until k = n.

In the following subsection we describe a recursive algorithm
for estimating photocurrent, and in subsection 3.2 we describe
a heuristic algorithm for performing motion detection.

3.1. Photocurrent Estimation

We simplify the derivations by neglecting dark current and re-
set noise. A detailed derivation of the estimation algorithm
with reset noise included is presented in [6]. We also assume
here that each pixel’s photocurrenti is constant. In the fol-
lowing subsection we deal with the case when photocurrent
changes during capture due to motion. Assumingn pixel val-
ues captured at�; 2�; : : : ; n� = T , thekth output charge is
given by

Qk = ik� +

kX
j=1

Uj + Vk; for 1 � k � n; (3)



whereVk is the readout noise of thekth capture,Uj is the shot
noise generated during time interval((j�1)�; j� ], andVk and
theUjs are all zero mean and independent, with

E(V 2
k ) = �2V > 0; for 1 � k � n;

E(U2
j ) = qi�; for 1 � j � k:

(4)

Define

~Ik =
Qk

k�
= i+

P
k

j=1
Uj

k�
+

Vk

k�
; for 1 � k � n: (5)

At time k� , we wish to find the best linear unbiased MSE es-
timate of the parameteri given f~I1; ~I2; : : : ; ~Ikg, i.e., coeffi-
cientsa1; a2; : : : ; ak such that

Îk =
1

gk

kX
j=1

aj ~Ij ; (6)

wheregk =
P

k

j=1
aj , minimizes

�2
k = E(Îk � i)2; (7)

subject to

E(Îk) = i:

In recursive form, after thekth capture, the(k + 1)st optimal
estimate can be written as

Î1 = ~I1;

Îk+1 = Îk + hk+1(~Ik+1 � Îk);
(8)

where the gainhk+1 is given by

hk+1 =
ak+1

gk + ak+1
; (9)

and theak coefficients are given by

a1 = 1
ak+1 = (k + 1)(1 + ak

k
+ qi�

�
2
V

wk);
(10)

wherewk =
P

k

j=1

aj

j
.

The MSE error�2
k can also be expressed in a recursive

form as
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(11)
Note that computing the coefficients and the MSE require knowl-
edge ofi, which is not known. To solve this problem we re-
placei by its latest estimate. This, of course, makes the esti-
mator suboptimal. Figure 3 shows thatÎk improves SNR over
~Ik by around6dB at low light, when readout noise dominates.
The SNR improvement is not significant at high light where
shot noise dominates.
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Figure 3: SNR vs. image indexk with and without estimation.

3.2. Motion/Saturation Detection

The derivation of the recursive linear estimation algorithm in
the previous section assumed thati(t) is constant and that sat-
uration does not occur beforek� . In this section we describe
an algorithm for detecting change in the value ofi(t) due to
motion or saturation before the new image is used to update
the photocurrent estimate. Since the statistics of the noise are
not completely known and no motion model is specified, it is
not possible to derive an optimal detection algorithm. Our al-
gorithm is, therefore, based on heuristics. By performing the
detection step prior to each estimation step we form a blur free
high dynamic range image from then captured images.

The algorithm operates on each pixel separately. After the
kth capture, the best MSE linear estimate ofi, Îk, and its MSE,
�2
k, are computed as detailed in the previous subsection. If the

current stays constant, the next observation~Ipre
k+1 would be

~Ipre
k+1 = i+

P
k+1

j=1
Uj

(k + 1)�
+

Vk+1

(k + 1)�
; (12)

and the best predictor of~Ipre
k+1

is Îk with the prediction MSE
given by

�2
k+1 = E

�
(~Ipre
k+1 � Îk)

2jÎk
�

= �2
k �

qÎk

(k+1)�
+

�
2
V

(k+1)2�2
:

(13)

Thus to decide whether the input signali changed between
time k� and(k + 1)� , we compare~Ik+1 =

Qk+1

(k+1)�
with Îk.

A simple decision rule would be to declare that motion has
occurred if

j~Ik+1 � Îkj � m�k+1; (14)

and to usêIk as the final estimate ofi, otherwise to use~Ik+1
to update the estimate ofi, i.e., Îk+1. The constantm > 0 is
chosen to achieve the desired tradeoff between SNR and mo-
tion blur. The higherm the more motion blur ifi changes with
time, but also the higher the SNR ifi is a constant, and vice
versa.

One potential problem with this “hard” decision rule is that
gradual drift ini can cause accumulation of estimation error
resulting in undesired motion blur. To address this problem
we propose the following “soft” decision rule.
Motion detection algorithm: For each pixel, after the(k+1)st
capture:



1. If j~Ik+1� Îkj � m1�k+1, then declare thatno motion
detected. Use ~Ik+1 to updateÎk+1 and setL+ = 0,
L� = 0.

2. If j~Ik+1�Îkj � m2�k+1,L+ = lmax, orL� = lmax,
then declare thatmotion detected. UseÎk as the final
estimate ofi.

3. If m1�k+1 < ~Ik+1 � Îk < m2�k+1, thendefer the
decision and setL+ = L+ + 1, L� = 0.

4. If �m2�k+1 < ~Ik+1 � Îk < �m1�k+1, thendefer
the decision and setL� = L� + 1, L+ = 0.

The countersL+, L� record the number of times the decision
is deferred, and0 < m1 < m2 andlmax are chosen to tradeoff
SNR with motion blur.

4. SIMULATION RESULT

Figure 4 plots SNR versusi for conventional sensor operation,
where the last sample~In is used, and using our estimation al-
gorithm. Note that using our algorithm, SNR is consistently
higher, due to the reduction in read noise. The improvement
is most pronounced at low light. More significantly the sensor
dynamic range defined as the ratio of the largest signalimax

to the smallest detectable signalimin is increased. Assuming
conventional sensor operation,imax = Qsat

T
andimin = �V

T
,

which using the sensor parameters of the example in Figure 4
yields dynamic range of47:4dB. Using our algorithm dynam-
ic range is extended to85:5dB – increasing30:1dB at the high
light end and8dB at the low light end.
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Figure 4: Estimation enhances the SNR and dynamic range

Figure 5 shows an example using a 20 frame image se-
quence captured by a high speed camera. Imagek, for 1 �

k � 20, was constructed by summing the firstk frames. Im-
ages (a) and (b) are the first and the last frames. Image (c) is
the last image, which simulates a normal exposure time im-
age. Image (d) is generated by applying our algorithm to the
20 images. Note that the image blur in (c) is almost completely
eliminated in (d).

(a) (b)

(c) (d)

Figure 5: (a) First frame, (b) Last frame, (c) Simulation of the
image generated by a conventional sensor. (d) Image generated
by applying our algorithm.
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