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Using Simulated Annealing to Design 
Good Codes 

ABBAS A. EL GAMAL, SENIOR MEMBER, IEEE, LANE A. HEMACHANDRA, ITZHAK SHPERLING, 
AND VICTOR K. WEI, MEMBER, IEEE 

Absfruct--Simulated annealing is a computational heuristic for obtain- 
ing approximate solutions to combinatorial optimization problems. It is 
used to construct good source codes, error-correcting codes, and spherical 
codes. For certain sets of parameters codes that are better than any other 
known in the literature are found. 

I. INTRODUCTION 

A NNEAL, as defined in Webster’s New Collegiate 
Dictionary, means: 1) to heat (as glass) in order to fix 

laid-on colors, and 2) to heat and then cool (as steel or 
glass) usually for softening and making less brittle. 

The cooling stage of annealing is usually done slowly to 
reduce the number of defects in the crystal structure (as 
steel) and to minimize the potential energy stored in the 
molecular configuration (as glass). A fundamental question 
in statistical mechanics concerns whether the system solidi- 
fies in the limit of low temperature, and if it does, whether 
it forms a crystalline solid or a glass. Motivated by a 
subtlety in numerical integration, the Metropolis algorithm 
[l] has often been used to simulate numerically the anneal- 
ing process to gain an understanding of the ground-state 
configuration. 

A typical combinatorial optimization problem seeks the 
minimum of a given objective (or cost) function of many 
variables. The variables are subject to intertwining con- 
straints, and they interact with each other in complicated 
ways not unlike the molecules in a physical system. By 
appropriately defining an effective temperature for the 
multivariable system and imitating the physical annealing 
process, researchers have sought to solve a diverse collec- 
tion of problems, with varying degrees of success. 

Kirkpatrick [2] first investigated the use of simulated 
annealing in connection with the physical design of com- 
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puters. He found the technique useful for solving VLSI 
layout and partitioning problems. More recently, re- 
searchers have compared simulated annealing with other 
heuristic techniques for NP-complete problems [5]. At 
present, simulated annealing provides the best heuristic 
algorithm for the graph partitioning problem, but exten- 
sive fine tuning has failed to make it the method of choice 
for graph coloring or the traveling salesman problem [3]. 
Johnson et al. [4] have investigated the interplay among 
local search, neighborhood structure, and combinatorial 
optimization problems. 

The successes of simulated annealing have resulted in a 
surge of interest in the method. Many evaluations of the 
technique and its application to diverse areas are in pro- 
gress [6]-[8]. In this paper we use simulated annealing to 
construct good source codes, error-correcting codes, and 
spherical codes. We have rediscovered many optimal or 
near-optimal source codes. For several parameter sets we 
have found constant-weight error-correcting codes that are 
better than any previous such code. We have also obtained 
spherical codes better than those constructed by an ad hoc 
method analogous to apple peeling. If we conceptualize 
codewords as repelling molecules, then the analogy be- 
tween a code with good distance properties and a molecule 
structure with low potential energy is apparent. This may 
account for our success here. A more sophisticated attempt 
to explain the success of simulated annealing in a diverse 
variety of problems can be found in [2]. 

The rest of the paper is organized into four sections. In 
Section II we describe the coding problems we investigate. 
In Section III we present our simulated annealing al- 
gorithm. In Section IV we summarize the results obtained 
from computer experiments with the algorithm, including 
a few record-breaking codes. In Section V we conclude the 
paper by remarking on the advantages and disadvantages 
of the algorithm. 

A detailed explanation of the intuition behind the simu- 
lated annealing method can be found in [2] or in many 
recent papers. We shall not include one here. 

II. THE DESIGN OF GOOD CODES 

In a communication system (Fig. 1) the design of good 
codes is of fundamental importance. Source information, 
such as English text and audio and video data, is repre- 
sented efficiently via a source code [lo]. American Na- 
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Fig. 1. Communicat ion system 

tional Standard Code for Information Interchange (ASCII) 
codes, the Huffman code, Morse code, and  various voice 
and picture encoding schemes fall into this category. The  
source-encoded information is then sent over a  channel  
(transmission med ia), such as a  telephone line, m icrowave 
link, or optical fiber, where the signals are often corrupted 
by noise. To  ensure reliable transmission, the data are 
further encoded via a  channel code (error-correcting code). 
This enables the detection of errors and their eradication. 
Prominent channel  codes include Hamming codes, Reed- 
Solomon codes, convolutional codes, and  trellis codes [ll], 
W I, W I. 

To be  precise, the source code we study here is a  set of 
M  binary n-tuples 

s= {X1,X2,.“,xM} c {OJ}“. 

The  rate of the code S is R = (l/n) log M . (All logarithms 
in this paper  are base two.) Let B” = (0, l}” denote the set 
of all n-tuples. The  distortion of a  source code is the 
following quantity: 

where the Hamming distance d,(x, y) between two bi- 
nary n-tuples is the number  of bit positions where they 
differ. A binary n-tuple is encoded to its nearest neighbor 
in S. The  distortion is the average number  of erroneous 
bits in encoding a  random n-tuple. When  S is used in a  
communicat ion system, it can encode a  random binary 
source with rate R and average distortion 6. A desirable 
property of a  source code is a  small distortion. 

G iven the length n and the size M , the construction of a  
source code with m inimum distortion is a  very difficult 
problem. The  Lloyd-Max algorithm [25] can be  used, but 
it often gets stuck in a  local opt imum and fails to find a  
m inimum-distortion code. An exhaustive search algorithm 
would have to check all 2” 

i 1  
M  possible codes, a  practical 

impossibility even for small values of n  and M . For 
example, if n = 7  and M  = 16, then about 128 

i 1  16  
z 1020 

codes would need to be  checked. However, we shall see in 
the next section how simulated anneal ing can be  used to 
find an  opt imum or near-opt imum source code without 
doing an  exhaustive search. 

The  channel  code (error-correcting code) we study here 
is also a  set of binary n-tuples 

c= {-q,-%~~~r~M} 
with rate R = (l/n) log M . Each member  x E C is called 
a  codeword. The  m inimum distance of C’is 

When  the channel  code is used in a  communicat ion sys- 
tem, up  to d,,/2 transmission errors can be  eradicated. A 
desirable property of a  channel  code is a  large m inimum 
distance dmi,. The Hamming weight of a  binary n-tuple x 
is the number  of ones in x. In this paper  we restrict 
ourselves to constant-weight codes where all codewords 
have the same Hamming weight. An important number  in 
the theory of error-correcting codes is A(n, d, w)-the 
maximum size of a  constant-weight code of length n, 
m inimum distance d or more, and  constant codeword 
weight w. 

The  constants A(n, d, w) are extremely difficult to de- 
termine. Sophisticated mathematical theories, such as the 
Leech lattice 1121, have been used to calculate these 
constants. On ly a  handful of values have been exactly 
determined [12], [13], notably A(24, 8, 8) = 759 and 
A(24,8,12) = 2576. For other values the gaps between 
upper  and lower bounds are often sizable [12], [13]. One  of 
the smallest undetermined values is 17  < A(23,10,7) I 23. 
In the next section we shall see how simulated anneal ing is 
used to raise this lower bound to 18  and to help narrow 
other gaps. 

Another channel  code we study is the spherical code. A 
spherical code is a  set of real vectors @  = {xi, x2, * . . , xm} 
on  the surface of a  unit sphere in n-dimensional Eucl idean 
space R”. The m inimum separating angle of a  spherical 
code is 

flm in = m in cos-l (x + y) 
x, YE@ 

X#Y 

where x . y is the inner (dot) product of x and y. Spheri- 
cal codes have important applications to transmission over 
the Gaussian channel  [15] and  to many other areas [16], 
[17]. A desirable property of a  spherical code is to have a  
large m inimum separating angle. An important number  is 
M( n, B)-the maximum number  of vectors of a  spherical 
code in n dimensions having a  m inimum separating angle 
greater than or equal  to 19. 

The  case 13  = r/3 is particularly interesting. The  num- 
ber M(n, n/3), called the kissing number, is the maximum 
number  of nonover lapping unit balls in n-dimensional 
space that can touch a  given unit ball simultaneously. The  
determination of the kissing numbers has a  long and 
fascinating history [18]-[20], culminating in the resolution 
of M(8,7r/3) = 240 and M(24, r/3) = 196 560. O ther 
kissing numbers beyond ‘three dimensions remain unde-  
cided. 

Generally, M(n, 0) is very difficult to determine, save 
for a  few trivial cases. In the next section we shall see how 
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simulated anneal ing can be  used to produce interesting 
lower bounds for M(n, 8). These results may not improve 
upon existing lower bounds for particular values of n  and 
8. For example, simulated anneal ing has not yielded any 
improvement on  existing lower bounds on  the kissing 
numbers.  However, the technique can be  used to generate 
reasonable lower bounds for general  values of n  and 6’ 
rather quickly. 

III. THE SIMULATEDANNEALINGALGORITHM 

W e  use the simulated anneal ing algorithm outl ined in 
F ig. 2  to find good source codes, constant-weight codes, 
and  spherical codes in our experiments. Our algorithm is 
similar to those simulated anneal ing algorithms used in 
other applications, such as those in [2]. 

CHOOSE CODE C, TEMPERATURE T 

co 

I 
DO 

I 
CHOOSE C: A PERTURBATION OF C 

LET AE=ENERGY(C?-ENERGY0 

IF AE<O THEN CCC’ 

ELSE WITH PROBABILITY EXP(-AE/T) CtC’ 

I 
UNTIL (SEVERAL ENERGY DROPS OR TOO MANY ITERATIONS) 

LOWER TEMPERATURE 

I 
UNTILtSTABLE CODE CONFIGURATION) 

Fig. 2. Simulated annealing algorithm. 

Initially, we choose a  random code and a  sufficiently 
high temperature. The  outer loop decreases the tempera- 
tures until a  series of stable code configurations has been 
seen; the inner loop perturbs the code until a  prescribed 
number  of energy drops occurs (not necessari ly in a  row), 
or too many iterations. After each perturbation, if the 
energy is decreased, we adopt the new code; if the energy 
is increased, we adopt the new code with probability 
exp(-AE/T). 

The  temperature T is a  control parameter of the al- 
gorithm. At high temperatures, exp (- AE/T) is invari- 
ably close to one for positive AE. Therefore, we almost 
always adopt the new code. At low temperatures 
exp (- A E/T) is close to zero for large A E, so we are not 
likely to adopt a  new code which greatly increases the 
energy function. The  initial temperature is set sufficiently 
high. For source codes we used Tititid = 10  . length in our 
experiments. For constant-weight codes and spherical codes 
we use Tititial = 1000. The  energy function E is chosen to 
steer the code transfiguration in the general  direction of 
reduced objective function. For source codes the energy 
function E is set to be  the distortion 6(S), the objective 
function. For constant-weight codes we choose 

E= c [d,(x> Y)]-” 
x, YEC 

X-+Y 

where k is a  constant. As the simulated anneal ing process 

proceeds, the codewords have a  tendency to repel each 
other, thus increasing the m inimum distance. W e  do  not 
choose the m inimum distance as the energy function be- 
cause it depends on  only a  pair of codewords; changes not 
involving any m inimum-distance codeword pair would not 
be  reflected in the energy function. The  choice of an  
energy function different from the objective function is not 
an  uncommon practice in simulated anneal ing [2]. W e  will 
comment  on  this later. W e  often use k = 2  in the compu- 
tation. O ther values of k and even other energy functions 
have been examined experimentally without noticeable 
improvement. 

To  perturb a  code, we randomly select a  codeword and 
randomly “jiggle” it, i.e., change one or two bits. The  
initial code has M  codewords, each of which is an  all-zero 
n-tuple (a very bad code indeed). W e  have tried other 
random initial codes with similar results because the all- 
zero initial code gets randomized very quickly at high 
temperatures. 

The  temperature is lowered in geometric series, i.e., 
T + aT. Typically, we choose the constant CY > 0.9. For 
source codes the temperature is lowered when the number  
of acceptances or rejections exceeds code size . (1 + 0.1 . 
code size/T). The  initial temperature is set at around 
10  . length. The  algorithm terminates when the tempera- 
ture drops below 0.01 * length, or when five consecutive 
temperature stages produce no  change in the code. For 
constant-weight codes and spherical codes we decrease the 
temperature when several (three to five) energy drops have 
occurred, or several hundred iterations. The  initial temper- 
ature is chosen to be  1000, and we terminate the algorithm 
manual ly when we see a  stable code configuration. 

If we had chosen the m inimum distance as the energy 
function, perturbations not involving any m inimum-dis- 
tance codeword pair would have resulted in no  change in 
the energy function and hence would be  adopted with 
probability one. This would have resembled a  random 
walk. W e  feel that distance variations between every 
codeword pair should be  reflected in the energy function. 
Experimental success seems to vindicate our decision. W e  
have also tried the energy function E = Cf[dH(x, y)], 
where f(e) is a  concave function with a  single m inimum at 
the desired m inimum distance. W e  attempted this energy 
function because in the cases where A(n, d, w) is de- 
termined, the distance profile of the opt imum codes tends 
to be  a  convex function with a  single maximum at the 
desired distance. However, this energy function converged 
more slowly than our original choice in the experiments we 
have performed. 

For the spherical code the simulation algorithm is essen- 
tially identical. The  energy function is chosen to be  

E = c [cd (X y)] -f 
xfysc 

Note that cos-1 (X . y) is the separating angle between the 
two vectors. For each perturbation we jiggle a  random 
codeword on  the spherical surface. 



EL GAMAL et ul.: USING SIMULATED ANNEALINGTO DESIGN GOOD CODES 

TABLE I 
SOURCE CODESVIA SIMULATED ANNEALING 

Distortion Hamming Number 
by Lower of 

Length Rate Simulated Bound on Codes 
n R Annealing Distortion Checked 

6 l/2 l/6 l/6 300 
7 4/7 11’8 11’8 1782 

10 0.3322 0.2371 0.2359 1674 
10 0.5 0.16396 0.16250 3000 

Iv. RESULTS 

Preliminary simulations have been performed on  source 
codes, constant-weight codes, and  spherical codes. The  
results are summarized in the following. Due to the nature 
of the simulated anneal ing algorithm, the codes in each 
parameter set are not exhaustively searched. On ly a  small 
portion of all possible codes are examined. W e  have also 
lim ited the CPU time  spent in a  simulation run to a  few 
hours. The  full power of the algorithm is not explored. The  
results obtained here demonstrate the potential power, not 
the ultimate lim it, of the simulated anneal ing algorithm. 

Source Codes 

Simulations were performed on  source codes with lengths 
ranging from six to ten and sizes varying from eight to 32. 
The  resulting distortion is equal  to or near the Hamming 
lower bound (Table I). The  total number  of iterations run 
ranges from 300 to 3000 for each set of parameters. Thus 
simulated anneal ing proves useful in finding good source 
codes, at least for the ranges of’parameters tested. 

For critical comparison we ran a  greedy version of the 
algorithm in which we start with a  low initial temperature. 
This mod ification has the effect of taking only the code 
transfigurations which reduce distortion. For n  = 7, m = 

119 

16, and about 200 iterations we got stuck with a  code 
having a  distortion lo-20 percent above m inimum in eight 
out of ten runs. 

F ig. 3  illustrates the history of a  single run of our 
algorithm which successfully finds a  source code of length 
seven, rate 4/7, and  distortion l/8 which meets the 
Hamming lower bound.  (This gives the result indicated in 
the second row of Table I.) The  horizontal axis corre- 
sponds to the temperature, and  the vertical axis corre- 
sponds to the distortion per bit, i.e., S(C)/length. The  
figure should be  read from right to left because we proceed 
from high temperatures to low temperatures. Although we 
started out with the code consisting of 16  all-zero code- 
words at temperature 10  . length = 70, only the part of the 
history corresponding to temperatures below ten is shown. 
W e  stay at each temperature stage for a  total of lO*(l + 
2*code size/T) iterations. The  temperature is lowered in a  
geometric series by a  factor of 0.9 at each reduction. The  
total number  of iterations in this run is 3206. The  per-bit 
distortions of the source codes found by the algorithm at 
each temperature stage is shown in circles. More codes 
may be  found than different values of distortion because 
different codes may have identical distortion. The  com- 
plete figure shows that the distortion has a  decreasing 
tendency, resulting in the m inimum at low-enough temper- 
atures. Notice that, occasionally, a  code with larger distor- 
tion than any code found at the previous (higher) tempera- 
ture may occur. This is the particular characteristic of the 
simulated anneal ing algorithm that enables it to avoid the 
trap of a  local m inimum in its search for the global 
m inimum. 

The  histories of other runs of our algorithm which have 
generated the remaining codes listed in Table I are not 
included here. The  figures for all histories exhibit a  de- 
creasing tendency for the distortion as the temperature 
drops, resulting in m inimum or near-minimum distortions. 

8 8 
‘o 8 8 

0.121 , I I 
-1.00 -0.50 0.00 0.50 1 .oo 

LOG IO (TEMPERATURE) 

LENGTH=7 RATE=0.57 STAY IN T=10%(1tZ*CODESIZE/T) TFACTOR=O.BO#lTERS=3206 

Fig. 3. History of simulated annealing run 
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TABLE II 
CONSTANT-WEIGHT CODES VIA SIMULATED ANNEALING 

Length Weight Distance Code Size 

21 9 10 22 
22 9 10 23 
23 I 10 18” 
23 8 10 28a 
23 9 10 24 
23 10 10 39 
23 11 10 39 
24 8 10 33a 
24 9 10 24 
24 11 10 51 
24 12 10 60 

“Best-known result in the literature. 

Upper Bound 

41 
57 
23 
50 
87 

117 
135 

68 
119 
223 
241 

TABLE III 
SIZE 18 CONSTANT-WEIGHT CODE FOR .4(23,10,7) 

1. 00000010010000011110001 
2. 00000101011010010001000 
3. 00001101000000100010101 
4. 00010000101000111000100 
5. 00010001000101010000011 
0. 00011000000011100101000 
7. 00101010101001000000001 
8. 00110010000010000010110 
9. 01000000110000000001111 

10. 01001000001110001000010 
11. 01010110010100100000000 
12. 01100001000100000111000 
13. 10000000110111000010000 
14. 10000011100000100100010 
15. 10001010000100010001100 
16. 10111001010000001000000 
17. 11000100000001001100100 
18. 11100000000010110000001 

TABLE IV 
SIZE 28 CONSTANT-WEIGHT CODE FOR .4(23,10,8) 

. 1. 00000101000110100001110 
2. 00100101100000010100011 
3. 10000100110100010011000 
4. 10001110000100001100010 
5. 00001001101111010000000 
5. 01100000101010100010100 
7. 11000011000101100010000 
8. 01001101010010000110000 
9. 11001100100001000000101 

10. 11010010100010000001010 
11. 10011000000000110010110 
12. 00100100011010001001001 
13. 00010001011000010101100 
14. 10000000001001000111011 
15. 00000011100000001011101 
16. 00101011010001000001010 
17. 00010100100001101101000 
18. 00110110000011010010000 
19. 10100010001100010000101 
20. 01000110010000111000100 
21. 10000001111000101000010 
22. 01010100011101000000010 
23. 00111000110100001000100 
24. 00011111001000100000001 
25. 01101000000100110101000 
26. 10010000010110100100001 
27. 01000000000110011010011 
28. 10100001000011001100100 

Constant Weight Codes 

Using the simulated annealing algorithm, we have dis- 
covered many good constant-weight codes whose parame- 
ters are listed in Table II. They provide improvements to 
the previous results in Graham and Sloane [13]. During the 
course of this research, the authors became aware of the 
newer results of Conway and Sloane [14] which supersede 
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TABLE V 
SIZE 33 CONSTANT-WEIGHT CODE FOR A(24,10,8) 

000000000101100011101010 
2. 000000100100111001010100 
3. 000000110110000100101100 
4. 00000100001111100000100l 
5. 000001010100010110000011 
6. 000010001110011010100000 
7. 000010101000000001100111 
6. 000100001010010000011110 
9. 000100110001011000100010 

10. 00010101p001000001010101 
11. 001000000011001110000110 
12. 001001101100001000001010 
13. 001011000010000011011000 
14. 001011011000100100000100 
15. 001100101000010111000000 
16. 001110000100100000010011 
17. 010000000010010101110001 
18. 010001110010100000010010 
19. q10100001100001100000101 
20. 010110010100010001001000 
21. 010111001001000010000010 
22. 011000001001101000110000 
23. 100000101111000000010001 
24. 100001100000001110110000 
25. 100010001001001101001000 
26. 100010010001110010010000 
27. 100100100000100010001101 
28. 100101000110100101000000 
29. 101000010100001001100001 
30. 110000011010000011000100 
31. 110001000101010000100100 
32. 111000000000110100001010 
33. 111110100010000000100000 

our findings. After more computational effort we were 
able to find three codes that are better than those reported 
in [14]. They are a (23,10,7) code with 18 codewords, a 
(23,1O,S) code with 28 codewords, and a (24,10,8) code 
with 33 codewords. The numbers in the parentheses ‘are 
the length, the minimum distance, and the codeword 
weight, respectively. The codewords of these codes are 
listed in Tables III-V. The upper bounds in Table II are 
taken from Graham and Sloane [13]. 

Spherical Codes 

We have also found many good spherical codes. They 
provide lower bounds on the constants M(n, 19). Using a 
method analogous to apple peeling, we have constructed a 
class of spherical codes. The details of our construction are 
contained in the Appendix. The results of the apple-peel- 
ing construction and simulated annealing in three-dimen- 
sional space are compared in Table VI. Simulated anneal- 
ing found better codes than the apple-peeling construction. 
One of these codes is listed in Table VII. It is possible that 
bounds exist rivaling or even superseding the apple-peeling 
bound in the literature. The comparison made in Table VI 
is preliminary. 

The fourth column in Table VI contains the Wyner 
lower bound [27], which is similar to the one derived by 
Shannon [28] but slightly sharper. The bound is 

M(n,e) 2 sinnP2+ d+ 
/ 1 -1 

where I( .) is the Gamma function. In three dimensions it 
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TABLE VI 
SPHERKALCODESVIASIMULATEDANNEALING 

Angle Lower Bound for M(3,O) Upper Bound 
Dimension cos 0 0 Wyner Lattice Apple Peel Annealing Rankin 

3 - 2/3 0.841 6 14 18 24 
3 13/16 - 0.62 10 12 30 31 42 
3 5/6 - 0.586 12 24 34 35 48 
3 0.524 14 40 45 59 
3 - 9/10 0.45 20 56 59 80 
3 13/14 - 0.38 28 48 82 83 112 
3 n/9 32 98 99 132 

TABLE VII 
SIZE 35 SPHERICALCODEFOR M(~,ARccos(~/~)) 

0. -0.183291 0.022164 0.982809 
1. 0.100781 -0.959698 -0.262341 
2. 0.790523 -0.462605 0.401335 
3. -0.810027 -0.387179 -0.440396 
4. 0.765679 0.579538 0.279058 
5. -0.269579 0.954104 0.130435 
6. 0.302644 -0.846476 0.438047 
7. 0.623330 -0.776523 -0.092038 
8. -0.066041 0.897189 -0.436681 
9. -0.208099 0.471576 -0.856919 

10. -0.129810 -0.588486 0.798018 
11. -0.255299 0.666100 0.700809 
12. 0.761180 0.103834 0.640175 
13. -0.973947 -0.001453 0.226773 
14. 0.874298 -0.322242 -0.362993 
15. 0.258973 0.858889 0.441863 
16. -0.615145 0.670210 -0.415228 
17. -0.803612 -0.577832 0.142539 
18. -0.233786 -0.571646 -0.786489 
19. -0.652256 -0.345887 0.674481 
20. 0.840418 0.417846 -0.345113 
21. 0.291185 0.399403 0.869304 
22. 0.620219 0.023453 -0.784078 
23. 0.397097 -0.587405 -0.705173 
24. 0.995169 0.034284 0.092000 
25. -0.678789 0.259884 0.686809 
26. -0.924050 0.182779 -0.335743 
27. -0.775339 0.603816 0.185083 
28. -0.294027 -0.908184 0.297910 
29. 0.378628 0.576793 -0.723845 
30. 0.447649 0.881887 -0.147941 
31. 0.384192 -0.297955 0.873853 
32. 0.069441 -0.068884 -0.995205 
33. -0.555841 -0.007377 -0.831256 
34. -0.466423 -0.836125 -0.288695 

reduces to 

The  second lower bound (fifth column of Table VI) is 
obtained from well-known lattice structures as described in 
Sloane [19]. The  upper  bound (column eight of Table VI) 
is due  to Rankin [29] as follows: 

where I/ = sin-’ [a sin(8/2)]. This bound is tighter than 
the standard volume bound.  In three dimensions it reduces 
to 

sin I/J tan +!I 
cos2#)/4 - cos $(l - cos J/) ’ 

Among the lower bounds included in Table VI, simu- 
lated anneal ing provided the best results.’ The  preliminary 
investigations in four dimensions also look promising. 
Simulated anneal ing shows that M(4, cos-r (5/6)) 2  97, 
which betters the lattice bound of 96, and  M(4,cos-’ 
(9/10)) 2  145, which betters the lattice bound of 144. 

Implementation Issues 

The simulation programs for constant-weight codes and 
spherical codes are implemented on  a  VAX 780 with a  
floating-point accelerator. In each application the C pro- 
gram consists of less than a  thousand statements. Most of 
the statements are for bookkeeping, debugging, and  
input/output. The  core of the program, which executes the 
anneal ing process, is less than two hundred statements 
long. 

Each of the three constant-weight codes listed in Tables 
III-V are found after a  few runs of the algorithm. The  
CPU time  spent on  a  typical run ranges from 15 m in for 
the code in Table III to a  maximum of about 2  h  for the 
codes in Tables IV and V. Unsuccessful runs are terminated 
manual ly after about 1-2 h. Once a  code has been found, 
we have been able to reproduce the success in almost every 
repeat run using the same cooling rate, al though the code 
found each time  is different. 

. 

The  simulation runs for three-dimensional spherical 
codes typically take less than 30  m in. The  test runs for 
higher dimensions are al lowed to consume up  to several 
hours of CPU time. 

W e  have used the basic algorithm as shown in F ig. 2  
throughout our experiments. No ma jor speed-up mod ifica- 
tion has been attempted. If large-scale experiments are to 
be  embarked upon, methods such as described in [21] can 
be  incorporated to reduce the running time. Jiggling several 
codewords simultaneously in each iteration of the al- 
gorithm in F ig. 2  may also help. 

V. CONCLUDING REMARK 

Simulated anneal ing promises to be  a  useful tool in 
designing good codes. W e  have found new codes better 
than any code previously known in the literature for many 

‘During the writing of this paper, the excellent constructions of three- 
dimensional spherical codes for several specific min imum separating 
angles [30] have been brought to the authors’ attention. It appears 
unlikely that the simulated annealing algorithm can better these codes. 
However, the algorithm remains useful in the automatic generation of 
codes with general parameters. 
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sets of parameters. The method of simulated annealing has 
already proven useful in many combinatorial optimization 
problems. Our experiment here indicates that simulated 
annealing is also useful in providing lower bounds to 
combinatorial constants, such as the coding theoretical 
constants A(n, d, w) and M(n, 8). Improvement to other 
constants, such as the Ramsey numbers, may be obtain- 
able. Several related source-coding problems, such as vec- 
tor quantization [32] and discrete Markov source codes 
[lo], are also subject to analysis by simulated annealing. 
Essentially, the same algorithm can be used with very little 
modification. 

The algorithm itself seems robust with respect to modifi- 
cations of the choice of energy function, perturbation 
pattern, and annealing schedule (consisting of the initial 
temperature, the temperature decrement, and the termina- 
tion conditions) as long as they stay reasonable. Though 
some interest exists in the fine tuning of annealing 
schedules [9], we have adhered to one kind of schedule in 
most of our experiments. In our experience simulated 
annealing appears robust for reasonable changes in the 
schedule. Better results are usually produced by the devo- 
tion of more CPU time. An important issue in simulated 
annealing is the convergence of the algorithm. We have 
largely ignored this issue in our studies. However, in all 
our experiments the results are converging. For more de- 
tails on this issue see [33] and [34]. The method is easily 
applicable to new areas, and the results may be exciting. 

One disadvantage of the simulated annealing algorithm 
is its liberal consumption of CPU time. In our experiments 
the required computation time goes up very rapidly with 
increasing parameter values. The choice of simulated an- 
nealing for a given problem must be weighed against other 
computational methods. For certain parameter values the 
simulated annealing algorithm finds it hard to contend 
with tight code constructions which make ingenuous use of 
advanced mathematical structures such as those contained 
in [12], [19], and [30]. The usefulness of the algorithm lies 
in its ability to generate reasonably good results automati- 
cally. The algorithm is relatively simple to implement and 
to adapt to particular problem constraints. In places where 
computation power is abundant and where specific 
mathematical constructions are lacking or unsatisfactory, 
the simulated annealing algorithm can be used effectively 
to generate reasonably good results mechanically. The 
codes generated in this paper are all nonsystematic codes, 
which could limit their applicability in practical situations. 
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APPENDIX 

In this Appendix we prove the apple-peeling lower bound on 
the numbers M( n, 0). We use a method of code construction 
which is similar to apple peeling in three dimensions, thus the 

name. We also present another construction method based on 
certain lattices in multiple dimensions. 

Theorem (The Apple-Peeling Bound): For 0 < 0 I n, n 2 3, 
we have 

M(n, 0) 

22. ;M 
r=O 

n - 1, arccos* 
[ 

~0~0 - sin’((i + i/2)8) 

cos2 ((i + 112) e) II 
where k = [ 7r/28 - l/2] and 

arccos(x), arccos*(x) = 2n 
i , 

-llX<l 
xc -1. 

Remark: In any dimension n 2 1, M(n, a + c) = 1 for 0 < 
c I 7r. In particular, M(n,2a) = 1. 

Proof: Letr=(sina,z,cos~,~~~~s~,~~~,~,~~~~s~)and 
y = (sin cy, w1 cos a, w2 cos (Y; . ., w,-~ cos a) be two points on 
the surface of the unit sphere with identical first coordinates. The 
two points z =(z1,z2;..,znm1) and w=(w~,w~;..,w~-~) 
are on the surface of the unit sphere in n - 1 dimensions. The 
points x and y are separated by an angle COSC’ (x . y) = 
cos -’ (sin2 cr + z . ~(30s~~ cy), while z and w are separated by 
cos-l (z . w). 

For each i and a = &(i + l/2)8 we have M(n - 
1, arccos* (cos 6 - sin2 a)/cos2 (u)) code points in n dimensions 
with first coordinates equal to cos OL and a minimum separating 
angle 2 0. Note that when (cos 0 - sin2 (Y)/COS~ (Y c - 1, we 
have precisely one point with a first coordinate equal to sin (Y 
because M( n - 1,2a) = 1. Two code points x and y with 
different first coordinates have their inner product x . y I 
sinasinp + coso~cos~ = cos(a! - /3) I costi. Hence cos-‘(.x 
. y) 2 8. By summing over all legal values of i, we obtain the 
apple-peeling bound. 

In two dimensions it is easy to show that M(2,fI) = [27r/Ol 
for 0 < 0 I 27r. This, together with the apple-peeling theorem, 
gives us the sixth column of Table VI. Note that when cos ((i + 
l/2)8) = 0, then cos 0 - sin2 ((i + l/2)8) < 0, and we take 
arccos*[(cos 8 - sin2 ((i + 1/2)e))/cos2 ((i + l/2)8)] = 271. 

The apple-peeling construction provides large codes in many 
dimensions. Although lattices provide the best-known lower 
bounds fpr kissing numbers (0 = ST/~) and excellent lower bounds 
in eight and 24 dimensions [16], [19], [20], [21], [31], the apple- 
peeling bound works well in other cases [32]. An additional 
advantage of the apple-peeling bound is its ease of implementa- 
tion in any dimension. Equivalent or superior bounds may exist 
in the literature. The studies made here are preliminary. 

We have also investigated another construction method based 
on certain lattices in n-dimensional space. First, choose k real 
numbers x1, x2;.., xk and k integers n,, n2,“‘, nk which add 
up to n. The collection of points with ni coordinates being x, 
and with the n, satisfying certain constraints form a spherical 
code. The minimum separating angle and the size of the code can 
be calculated for specific choices of the xi and the constraints on 
the n,. For example, the set of n-dimensional vectors with 
coordinates taken from (0, l/ 6, - l/ 6) and with exactly m 
nonzero coordinates forms a spherical code with 2m( i) code 
points and a minimum separating angle = COSK’ (1 - (l/m)). 
The lattice construction presented earlier can be used in combi- 
nation with the apple-peeling bound to produce good lower 
bounds to the size of spherical codes. 
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