
116 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 1, JANUARY, 1987

Using Simulated Annealing to Design
Good Codes

ABBAS A. EL GAMAL, SENIOR MEMBER, IEEE, LANE A. HEMACHANDRA, ITZHAK SHPERLING,
AND VICTOR K. WEI, MEMBER, IEEE

Absfruct--Simulated annealing is a computational heuristic for obtain-
ing approximate solutions to combinatorial optimization problems. It is
used to construct good source codes, error-correcting codes, and spherical
codes. For certain sets of parameters codes that are better than any other
known in the literature are found.

I. INTRODUCTION

A NNEAL, as defined in Webster’s New Collegiate
Dictionary, means: 1) to heat (as glass) in order to fix

laid-on colors, and 2) to heat and then cool (as steel or
glass) usually for softening and making less brittle.

The cooling stage of annealing is usually done slowly to
reduce the number of defects in the crystal structure (as
steel) and to minimize the potential energy stored in the
molecular configuration (as glass). A fundamental question
in statistical mechanics concerns whether the system solidi-
fies in the limit of low temperature, and if it does, whether
it forms a crystalline solid or a glass. Motivated by a
subtlety in numerical integration, the Metropolis algorithm
[l] has often been used to simulate numerically the anneal-
ing process to gain an understanding of the ground-state
configuration.

A typical combinatorial optimization problem seeks the
minimum of a given objective (or cost) function of many
variables. The variables are subject to intertwining con-
straints, and they interact with each other in complicated
ways not unlike the molecules in a physical system. By
appropriately defining an effective temperature for the
multivariable system and imitating the physical annealing
process, researchers have sought to solve a diverse collec-
tion of problems, with varying degrees of success.

Kirkpatrick [2] first investigated the use of simulated
annealing in connection with the physical design of com-

Manuscript received October 9, 1985; revised January 1, 1986. This
work was supported in part by the National Science Foundation under
NSF Grant ECS-83-00988. This paper was presented in part at the
Simulated Annealing Conference, Yorktown Heights, NY, 1984; at the
22nd Annual Allerton Conference on Communication, Control, and
Computing, Monticello, IL, October 3-5, 1984; and at the International
Symposium on Information Theory, Brighton, England, June 1985.

A. A. El Gamal and I. Shoerling are with the Information Systems
Laboratory, Department of Eiectri&l Engineering, Stanford University,
Stanford, CA 94305, USA.

L. A. Hemachandra was with Bell Communications Research, Morris-
town, NJ. He is now with the Department of Computer Science, Cornell
University, Ithaca, NY 14853, USA.

V. K. Wei is with Bell Communications Research, 435 South Street,
Morristown, NJ 07960, USA.

IEEE Log Number 8610106.

puters. He found the technique useful for solving VLSI
layout and partitioning problems. More recently, re-
searchers have compared simulated annealing with other
heuristic techniques for NP-complete problems [5]. At
present, simulated annealing provides the best heuristic
algorithm for the graph partitioning problem, but exten-
sive fine tuning has failed to make it the method of choice
for graph coloring or the traveling salesman problem [3].
Johnson et al. [4] have investigated the interplay among
local search, neighborhood structure, and combinatorial
optimization problems.

The successes of simulated annealing have resulted in a
surge of interest in the method. Many evaluations of the
technique and its application to diverse areas are in pro-
gress [6]-[8]. In this paper we use simulated annealing to
construct good source codes, error-correcting codes, and
spherical codes. We have rediscovered many optimal or
near-optimal source codes. For several parameter sets we
have found constant-weight error-correcting codes that are
better than any previous such code. We have also obtained
spherical codes better than those constructed by an ad hoc
method analogous to apple peeling. If we conceptualize
codewords as repelling molecules, then the analogy be-
tween a code with good distance properties and a molecule
structure with low potential energy is apparent. This may
account for our success here. A more sophisticated attempt
to explain the success of simulated annealing in a diverse
variety of problems can be found in [2].

The rest of the paper is organized into four sections. In
Section II we describe the coding problems we investigate.
In Section III we present our simulated annealing al-
gorithm. In Section IV we summarize the results obtained
from computer experiments with the algorithm, including
a few record-breaking codes. In Section V we conclude the
paper by remarking on the advantages and disadvantages
of the algorithm.

A detailed explanation of the intuition behind the simu-
lated annealing method can be found in [2] or in many
recent papers. We shall not include one here.

II. THE DESIGN OF GOOD CODES

In a communication system (Fig. 1) the design of good
codes is of fundamental importance. Source information,
such as English text and audio and video data, is repre-
sented efficiently via a source code [lo]. American Na-

OOlS-9448/87/0100-0116$01.00 01987 IEEE

EL GAMAL et ai.: USING SIMULATED ANNEALING TO DESIGN’GOOD CODES 117

r-l CHANNEL

, I

DESTINATION t SOURCE CHANNEL
DECODER - DECODER

,

Fig. 1. Communicat ion system

tional Standard Code for Information Interchange (ASCII)
codes, the Huffman code, Morse code, and various voice
and picture encoding schemes fall into this category. The
source-encoded information is then sent over a channel
(transmission med ia), such as a telephone line, m icrowave
link, or optical fiber, where the signals are often corrupted
by noise. To ensure reliable transmission, the data are
further encoded via a channel code (error-correcting code).
This enables the detection of errors and their eradication.
Prominent channel codes include Hamming codes, Reed-
Solomon codes, convolutional codes, and trellis codes [ll],
W I, W I.

To be precise, the source code we study here is a set of
M binary n-tuples

s= {X1,X2,.“,xM} c {OJ}“.

The rate of the code S is R = (l/n) log M . (All logarithms
in this paper are base two.) Let B” = (0, l}” denote the set
of all n-tuples. The distortion of a source code is the
following quantity:

where the Hamming distance d,(x, y) between two bi-
nary n-tuples is the number of bit positions where they
differ. A binary n-tuple is encoded to its nearest neighbor
in S. The distortion is the average number of erroneous
bits in encoding a random n-tuple. When S is used in a
communicat ion system, it can encode a random binary
source with rate R and average distortion 6. A desirable
property of a source code is a small distortion.

G iven the length n and the size M , the construction of a
source code with m inimum distortion is a very difficult
problem. The Lloyd-Max algorithm [25] can be used, but
it often gets stuck in a local opt imum and fails to find a
m inimum-distortion code. An exhaustive search algorithm
would have to check all 2”

i 1
M possible codes, a practical

impossibility even for small values of n and M . For
example, if n = 7 and M = 16, then about 128

i 1 16
z 1020

codes would need to be checked. However, we shall see in
the next section how simulated anneal ing can be used to
find an opt imum or near-opt imum source code without
doing an exhaustive search.

The channel code (error-correcting code) we study here
is also a set of binary n-tuples

c= {-q,-%~~~r~M}
with rate R = (l/n) log M . Each member x E C is called
a codeword. The m inimum distance of C’is

When the channel code is used in a communicat ion sys-
tem, up to d,,/2 transmission errors can be eradicated. A
desirable property of a channel code is a large m inimum
distance dmi,. The Hamming weight of a binary n-tuple x
is the number of ones in x. In this paper we restrict
ourselves to constant-weight codes where all codewords
have the same Hamming weight. An important number in
the theory of error-correcting codes is A(n, d, w)-the
maximum size of a constant-weight code of length n,
m inimum distance d or more, and constant codeword
weight w.

The constants A(n, d, w) are extremely difficult to de-
termine. Sophisticated mathematical theories, such as the
Leech lattice 1121, have been used to calculate these
constants. On ly a handful of values have been exactly
determined [12], [13], notably A(24, 8, 8) = 759 and
A(24,8,12) = 2576. For other values the gaps between
upper and lower bounds are often sizable [12], [13]. One of
the smallest undetermined values is 17 < A(23,10,7) I 23.
In the next section we shall see how simulated anneal ing is
used to raise this lower bound to 18 and to help narrow
other gaps.

Another channel code we study is the spherical code. A
spherical code is a set of real vectors @ = {xi, x2, * . . , xm}
on the surface of a unit sphere in n-dimensional Eucl idean
space R”. The m inimum separating angle of a spherical
code is

flm in = m in cos-l (x + y)
x, YE@

X#Y

where x . y is the inner (dot) product of x and y. Spheri-
cal codes have important applications to transmission over
the Gaussian channel [15] and to many other areas [16],
[17]. A desirable property of a spherical code is to have a
large m inimum separating angle. An important number is
M(n, B)-the maximum number of vectors of a spherical
code in n dimensions having a m inimum separating angle
greater than or equal to 19.

The case 13 = r/3 is particularly interesting. The num-
ber M(n, n/3), called the kissing number, is the maximum
number of nonover lapping unit balls in n-dimensional
space that can touch a given unit ball simultaneously. The
determination of the kissing numbers has a long and
fascinating history [18]-[20], culminating in the resolution
of M(8,7r/3) = 240 and M(24, r/3) = 196 560. O ther
kissing numbers beyond ‘three dimensions remain unde-
cided.

Generally, M(n, 0) is very difficult to determine, save
for a few trivial cases. In the next section we shall see how

118 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 1, JANUARY, 1987

simulated anneal ing can be used to produce interesting
lower bounds for M(n, 8). These results may not improve
upon existing lower bounds for particular values of n and
8. For example, simulated anneal ing has not yielded any
improvement on existing lower bounds on the kissing
numbers. However, the technique can be used to generate
reasonable lower bounds for general values of n and 6’
rather quickly.

III. THE SIMULATEDANNEALINGALGORITHM

W e use the simulated anneal ing algorithm outl ined in
F ig. 2 to find good source codes, constant-weight codes,
and spherical codes in our experiments. Our algorithm is
similar to those simulated anneal ing algorithms used in
other applications, such as those in [2].

CHOOSE CODE C, TEMPERATURE T

co

I
DO

I
CHOOSE C: A PERTURBATION OF C

LET AE=ENERGY(C?-ENERGY0

IF AE<O THEN CCC’

ELSE WITH PROBABILITY EXP(-AE/T) CtC’

I
UNTIL (SEVERAL ENERGY DROPS OR TOO MANY ITERATIONS)

LOWER TEMPERATURE

I
UNTILtSTABLE CODE CONFIGURATION)

Fig. 2. Simulated annealing algorithm.

Initially, we choose a random code and a sufficiently
high temperature. The outer loop decreases the tempera-
tures until a series of stable code configurations has been
seen; the inner loop perturbs the code until a prescribed
number of energy drops occurs (not necessari ly in a row),
or too many iterations. After each perturbation, if the
energy is decreased, we adopt the new code; if the energy
is increased, we adopt the new code with probability
exp(-AE/T).

The temperature T is a control parameter of the al-
gorithm. At high temperatures, exp (- AE/T) is invari-
ably close to one for positive AE. Therefore, we almost
always adopt the new code. At low temperatures
exp (- A E/T) is close to zero for large A E, so we are not
likely to adopt a new code which greatly increases the
energy function. The initial temperature is set sufficiently
high. For source codes we used Tititid = 10 . length in our
experiments. For constant-weight codes and spherical codes
we use Tititial = 1000. The energy function E is chosen to
steer the code transfiguration in the general direction of
reduced objective function. For source codes the energy
function E is set to be the distortion 6(S), the objective
function. For constant-weight codes we choose

E= c [d,(x> Y)]-”
x, YEC

X-+Y

where k is a constant. As the simulated anneal ing process

proceeds, the codewords have a tendency to repel each
other, thus increasing the m inimum distance. W e do not
choose the m inimum distance as the energy function be-
cause it depends on only a pair of codewords; changes not
involving any m inimum-distance codeword pair would not
be reflected in the energy function. The choice of an
energy function different from the objective function is not
an uncommon practice in simulated anneal ing [2]. W e will
comment on this later. W e often use k = 2 in the compu-
tation. O ther values of k and even other energy functions
have been examined experimentally without noticeable
improvement.

To perturb a code, we randomly select a codeword and
randomly “jiggle” it, i.e., change one or two bits. The
initial code has M codewords, each of which is an all-zero
n-tuple (a very bad code indeed). W e have tried other
random initial codes with similar results because the all-
zero initial code gets randomized very quickly at high
temperatures.

The temperature is lowered in geometric series, i.e.,
T + aT. Typically, we choose the constant CY > 0.9. For
source codes the temperature is lowered when the number
of acceptances or rejections exceeds code size . (1 + 0.1 .
code size/T). The initial temperature is set at around
10 . length. The algorithm terminates when the tempera-
ture drops below 0.01 * length, or when five consecutive
temperature stages produce no change in the code. For
constant-weight codes and spherical codes we decrease the
temperature when several (three to five) energy drops have
occurred, or several hundred iterations. The initial temper-
ature is chosen to be 1000, and we terminate the algorithm
manual ly when we see a stable code configuration.

If we had chosen the m inimum distance as the energy
function, perturbations not involving any m inimum-dis-
tance codeword pair would have resulted in no change in
the energy function and hence would be adopted with
probability one. This would have resembled a random
walk. W e feel that distance variations between every
codeword pair should be reflected in the energy function.
Experimental success seems to vindicate our decision. W e
have also tried the energy function E = Cf[dH(x, y)],
where f(e) is a concave function with a single m inimum at
the desired m inimum distance. W e attempted this energy
function because in the cases where A(n, d, w) is de-
termined, the distance profile of the opt imum codes tends
to be a convex function with a single maximum at the
desired distance. However, this energy function converged
more slowly than our original choice in the experiments we
have performed.

For the spherical code the simulation algorithm is essen-
tially identical. The energy function is chosen to be

E = c [cd (X y)] -f
xfysc

Note that cos-1 (X . y) is the separating angle between the
two vectors. For each perturbation we jiggle a random
codeword on the spherical surface.

EL GAMAL et ul.: USING SIMULATED ANNEALINGTO DESIGN GOOD CODES

TABLE I
SOURCE CODESVIA SIMULATED ANNEALING

Distortion Hamming Number
by Lower of

Length Rate Simulated Bound on Codes
n R Annealing Distortion Checked

6 l/2 l/6 l/6 300
7 4/7 11’8 11’8 1782

10 0.3322 0.2371 0.2359 1674
10 0.5 0.16396 0.16250 3000

Iv. RESULTS

Preliminary simulations have been performed on source
codes, constant-weight codes, and spherical codes. The
results are summarized in the following. Due to the nature
of the simulated anneal ing algorithm, the codes in each
parameter set are not exhaustively searched. On ly a small
portion of all possible codes are examined. W e have also
lim ited the CPU time spent in a simulation run to a few
hours. The full power of the algorithm is not explored. The
results obtained here demonstrate the potential power, not
the ultimate lim it, of the simulated anneal ing algorithm.

Source Codes

Simulations were performed on source codes with lengths
ranging from six to ten and sizes varying from eight to 32.
The resulting distortion is equal to or near the Hamming
lower bound (Table I). The total number of iterations run
ranges from 300 to 3000 for each set of parameters. Thus
simulated anneal ing proves useful in finding good source
codes, at least for the ranges of’parameters tested.

For critical comparison we ran a greedy version of the
algorithm in which we start with a low initial temperature.
This mod ification has the effect of taking only the code
transfigurations which reduce distortion. For n = 7, m =

119

16, and about 200 iterations we got stuck with a code
having a distortion lo-20 percent above m inimum in eight
out of ten runs.

F ig. 3 illustrates the history of a single run of our
algorithm which successfully finds a source code of length
seven, rate 4/7, and distortion l/8 which meets the
Hamming lower bound. (This gives the result indicated in
the second row of Table I.) The horizontal axis corre-
sponds to the temperature, and the vertical axis corre-
sponds to the distortion per bit, i.e., S(C)/length. The
figure should be read from right to left because we proceed
from high temperatures to low temperatures. Although we
started out with the code consisting of 16 all-zero code-
words at temperature 10 . length = 70, only the part of the
history corresponding to temperatures below ten is shown.
W e stay at each temperature stage for a total of lO*(l +
2*code size/T) iterations. The temperature is lowered in a
geometric series by a factor of 0.9 at each reduction. The
total number of iterations in this run is 3206. The per-bit
distortions of the source codes found by the algorithm at
each temperature stage is shown in circles. More codes
may be found than different values of distortion because
different codes may have identical distortion. The com-
plete figure shows that the distortion has a decreasing
tendency, resulting in the m inimum at low-enough temper-
atures. Notice that, occasionally, a code with larger distor-
tion than any code found at the previous (higher) tempera-
ture may occur. This is the particular characteristic of the
simulated anneal ing algorithm that enables it to avoid the
trap of a local m inimum in its search for the global
m inimum.

The histories of other runs of our algorithm which have
generated the remaining codes listed in Table I are not
included here. The figures for all histories exhibit a de-
creasing tendency for the distortion as the temperature
drops, resulting in m inimum or near-minimum distortions.

8 8
‘o 8 8

0.121 , I I
-1.00 -0.50 0.00 0.50 1 .oo

LOG IO (TEMPERATURE)

LENGTH=7 RATE=0.57 STAY IN T=10%(1tZ*CODESIZE/T) TFACTOR=O.BO#lTERS=3206

Fig. 3. History of simulated annealing run

120

TABLE II
CONSTANT-WEIGHT CODES VIA SIMULATED ANNEALING

Length Weight Distance Code Size

21 9 10 22
22 9 10 23
23 I 10 18”
23 8 10 28a
23 9 10 24
23 10 10 39
23 11 10 39
24 8 10 33a
24 9 10 24
24 11 10 51
24 12 10 60

“Best-known result in the literature.

Upper Bound

41
57
23
50
87

117
135

68
119
223
241

TABLE III
SIZE 18 CONSTANT-WEIGHT CODE FOR .4(23,10,7)

1. 00000010010000011110001
2. 00000101011010010001000
3. 00001101000000100010101
4. 00010000101000111000100
5. 00010001000101010000011
0. 00011000000011100101000
7. 00101010101001000000001
8. 00110010000010000010110
9. 01000000110000000001111

10. 01001000001110001000010
11. 01010110010100100000000
12. 01100001000100000111000
13. 10000000110111000010000
14. 10000011100000100100010
15. 10001010000100010001100
16. 10111001010000001000000
17. 11000100000001001100100
18. 11100000000010110000001

TABLE IV
SIZE 28 CONSTANT-WEIGHT CODE FOR .4(23,10,8)

. 1. 00000101000110100001110
2. 00100101100000010100011
3. 10000100110100010011000
4. 10001110000100001100010
5. 00001001101111010000000
5. 01100000101010100010100
7. 11000011000101100010000
8. 01001101010010000110000
9. 11001100100001000000101

10. 11010010100010000001010
11. 10011000000000110010110
12. 00100100011010001001001
13. 00010001011000010101100
14. 10000000001001000111011
15. 00000011100000001011101
16. 00101011010001000001010
17. 00010100100001101101000
18. 00110110000011010010000
19. 10100010001100010000101
20. 01000110010000111000100
21. 10000001111000101000010
22. 01010100011101000000010
23. 00111000110100001000100
24. 00011111001000100000001
25. 01101000000100110101000
26. 10010000010110100100001
27. 01000000000110011010011
28. 10100001000011001100100

Constant Weight Codes

Using the simulated annealing algorithm, we have dis-
covered many good constant-weight codes whose parame-
ters are listed in Table II. They provide improvements to
the previous results in Graham and Sloane [13]. During the
course of this research, the authors became aware of the
newer results of Conway and Sloane [14] which supersede

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 1, JANUARY, 1987

TABLE V
SIZE 33 CONSTANT-WEIGHT CODE FOR A(24,10,8)

000000000101100011101010
2. 000000100100111001010100
3. 000000110110000100101100
4. 00000100001111100000100l
5. 000001010100010110000011
6. 000010001110011010100000
7. 000010101000000001100111
6. 000100001010010000011110
9. 000100110001011000100010

10. 00010101p001000001010101
11. 001000000011001110000110
12. 001001101100001000001010
13. 001011000010000011011000
14. 001011011000100100000100
15. 001100101000010111000000
16. 001110000100100000010011
17. 010000000010010101110001
18. 010001110010100000010010
19. q10100001100001100000101
20. 010110010100010001001000
21. 010111001001000010000010
22. 011000001001101000110000
23. 100000101111000000010001
24. 100001100000001110110000
25. 100010001001001101001000
26. 100010010001110010010000
27. 100100100000100010001101
28. 100101000110100101000000
29. 101000010100001001100001
30. 110000011010000011000100
31. 110001000101010000100100
32. 111000000000110100001010
33. 111110100010000000100000

our findings. After more computational effort we were
able to find three codes that are better than those reported
in [14]. They are a (23,10,7) code with 18 codewords, a
(23,1O,S) code with 28 codewords, and a (24,10,8) code
with 33 codewords. The numbers in the parentheses ‘are
the length, the minimum distance, and the codeword
weight, respectively. The codewords of these codes are
listed in Tables III-V. The upper bounds in Table II are
taken from Graham and Sloane [13].

Spherical Codes

We have also found many good spherical codes. They
provide lower bounds on the constants M(n, 19). Using a
method analogous to apple peeling, we have constructed a
class of spherical codes. The details of our construction are
contained in the Appendix. The results of the apple-peel-
ing construction and simulated annealing in three-dimen-
sional space are compared in Table VI. Simulated anneal-
ing found better codes than the apple-peeling construction.
One of these codes is listed in Table VII. It is possible that
bounds exist rivaling or even superseding the apple-peeling
bound in the literature. The comparison made in Table VI
is preliminary.

The fourth column in Table VI contains the Wyner
lower bound [27], which is similar to the one derived by
Shannon [28] but slightly sharper. The bound is

M(n,e) 2 sinnP2+ d+
/ 1 -1

where I(.) is the Gamma function. In three dimensions it

EL GAMAL eiU/.: USING SIMULATED ANNEALINGTODESIGN GOOD CODES 121

TABLE VI
SPHERKALCODESVIASIMULATEDANNEALING

Angle Lower Bound for M(3,O) Upper Bound
Dimension cos 0 0 Wyner Lattice Apple Peel Annealing Rankin

3 - 2/3 0.841 6 14 18 24
3 13/16 - 0.62 10 12 30 31 42
3 5/6 - 0.586 12 24 34 35 48
3 0.524 14 40 45 59
3 - 9/10 0.45 20 56 59 80
3 13/14 - 0.38 28 48 82 83 112
3 n/9 32 98 99 132

TABLE VII
SIZE 35 SPHERICALCODEFOR M(~,ARccos(~/~))

0. -0.183291 0.022164 0.982809
1. 0.100781 -0.959698 -0.262341
2. 0.790523 -0.462605 0.401335
3. -0.810027 -0.387179 -0.440396
4. 0.765679 0.579538 0.279058
5. -0.269579 0.954104 0.130435
6. 0.302644 -0.846476 0.438047
7. 0.623330 -0.776523 -0.092038
8. -0.066041 0.897189 -0.436681
9. -0.208099 0.471576 -0.856919

10. -0.129810 -0.588486 0.798018
11. -0.255299 0.666100 0.700809
12. 0.761180 0.103834 0.640175
13. -0.973947 -0.001453 0.226773
14. 0.874298 -0.322242 -0.362993
15. 0.258973 0.858889 0.441863
16. -0.615145 0.670210 -0.415228
17. -0.803612 -0.577832 0.142539
18. -0.233786 -0.571646 -0.786489
19. -0.652256 -0.345887 0.674481
20. 0.840418 0.417846 -0.345113
21. 0.291185 0.399403 0.869304
22. 0.620219 0.023453 -0.784078
23. 0.397097 -0.587405 -0.705173
24. 0.995169 0.034284 0.092000
25. -0.678789 0.259884 0.686809
26. -0.924050 0.182779 -0.335743
27. -0.775339 0.603816 0.185083
28. -0.294027 -0.908184 0.297910
29. 0.378628 0.576793 -0.723845
30. 0.447649 0.881887 -0.147941
31. 0.384192 -0.297955 0.873853
32. 0.069441 -0.068884 -0.995205
33. -0.555841 -0.007377 -0.831256
34. -0.466423 -0.836125 -0.288695

reduces to

The second lower bound (fifth column of Table VI) is
obtained from well-known lattice structures as described in
Sloane [19]. The upper bound (column eight of Table VI)
is due to Rankin [29] as follows:

where I/ = sin-’ [a sin(8/2)]. This bound is tighter than
the standard volume bound. In three dimensions it reduces
to

sin I/J tan +!I
cos2#)/4 - cos $(l - cos J/) ’

Among the lower bounds included in Table VI, simu-
lated anneal ing provided the best results.’ The preliminary
investigations in four dimensions also look promising.
Simulated anneal ing shows that M(4, cos-r (5/6)) 2 97,
which betters the lattice bound of 96, and M(4,cos-’
(9/10)) 2 145, which betters the lattice bound of 144.

Implementation Issues

The simulation programs for constant-weight codes and
spherical codes are implemented on a VAX 780 with a
floating-point accelerator. In each application the C pro-
gram consists of less than a thousand statements. Most of
the statements are for bookkeeping, debugging, and
input/output. The core of the program, which executes the
anneal ing process, is less than two hundred statements
long.

Each of the three constant-weight codes listed in Tables
III-V are found after a few runs of the algorithm. The
CPU time spent on a typical run ranges from 15 m in for
the code in Table III to a maximum of about 2 h for the
codes in Tables IV and V. Unsuccessful runs are terminated
manual ly after about 1-2 h. Once a code has been found,
we have been able to reproduce the success in almost every
repeat run using the same cooling rate, al though the code
found each time is different.

.

The simulation runs for three-dimensional spherical
codes typically take less than 30 m in. The test runs for
higher dimensions are al lowed to consume up to several
hours of CPU time.

W e have used the basic algorithm as shown in F ig. 2
throughout our experiments. No ma jor speed-up mod ifica-
tion has been attempted. If large-scale experiments are to
be embarked upon, methods such as described in [21] can
be incorporated to reduce the running time. Jiggling several
codewords simultaneously in each iteration of the al-
gorithm in F ig. 2 may also help.

V. CONCLUDING REMARK

Simulated anneal ing promises to be a useful tool in
designing good codes. W e have found new codes better
than any code previously known in the literature for many

‘During the writing of this paper, the excellent constructions of three-
dimensional spherical codes for several specific min imum separating
angles [30] have been brought to the authors’ attention. It appears
unlikely that the simulated annealing algorithm can better these codes.
However, the algorithm remains useful in the automatic generation of
codes with general parameters.

122 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 1, JANUARY, 1987

sets of parameters. The method of simulated annealing has
already proven useful in many combinatorial optimization
problems. Our experiment here indicates that simulated
annealing is also useful in providing lower bounds to
combinatorial constants, such as the coding theoretical
constants A(n, d, w) and M(n, 8). Improvement to other
constants, such as the Ramsey numbers, may be obtain-
able. Several related source-coding problems, such as vec-
tor quantization [32] and discrete Markov source codes
[lo], are also subject to analysis by simulated annealing.
Essentially, the same algorithm can be used with very little
modification.

The algorithm itself seems robust with respect to modifi-
cations of the choice of energy function, perturbation
pattern, and annealing schedule (consisting of the initial
temperature, the temperature decrement, and the termina-
tion conditions) as long as they stay reasonable. Though
some interest exists in the fine tuning of annealing
schedules [9], we have adhered to one kind of schedule in
most of our experiments. In our experience simulated
annealing appears robust for reasonable changes in the
schedule. Better results are usually produced by the devo-
tion of more CPU time. An important issue in simulated
annealing is the convergence of the algorithm. We have
largely ignored this issue in our studies. However, in all
our experiments the results are converging. For more de-
tails on this issue see [33] and [34]. The method is easily
applicable to new areas, and the results may be exciting.

One disadvantage of the simulated annealing algorithm
is its liberal consumption of CPU time. In our experiments
the required computation time goes up very rapidly with
increasing parameter values. The choice of simulated an-
nealing for a given problem must be weighed against other
computational methods. For certain parameter values the
simulated annealing algorithm finds it hard to contend
with tight code constructions which make ingenuous use of
advanced mathematical structures such as those contained
in [12], [19], and [30]. The usefulness of the algorithm lies
in its ability to generate reasonably good results automati-
cally. The algorithm is relatively simple to implement and
to adapt to particular problem constraints. In places where
computation power is abundant and where specific
mathematical constructions are lacking or unsatisfactory,
the simulated annealing algorithm can be used effectively
to generate reasonably good results mechanically. The
codes generated in this paper are all nonsystematic codes,
which could limit their applicability in practical situations.

ACKNOWLEDGMENT

Fruitful discussions with N. J. A. Sloane and D. S.
Johnson are heartily acknowledged.

APPENDIX

In this Appendix we prove the apple-peeling lower bound on
the numbers M(n, 0). We use a method of code construction
which is similar to apple peeling in three dimensions, thus the

name. We also present another construction method based on
certain lattices in multiple dimensions.

Theorem (The Apple-Peeling Bound): For 0 < 0 I n, n 2 3,
we have

M(n, 0)

22. ;M
r=O

n - 1, arccos*
[

~0~0 - sin’((i + i/2)8)

cos2 ((i + 112) e) II
where k = [7r/28 - l/2] and

arccos(x), arccos*(x) = 2n
i ,

-llX<l
xc -1.

Remark: In any dimension n 2 1, M(n, a + c) = 1 for 0 <
c I 7r. In particular, M(n,2a) = 1.

Proof: Letr=(sina,z,cos~,~~~~s~,~~~,~,~~~~s~)and
y = (sin cy, w1 cos a, w2 cos (Y; . ., w,-~ cos a) be two points on
the surface of the unit sphere with identical first coordinates. The
two points z =(z1,z2;..,znm1) and w=(w~,w~;..,w~-~)
are on the surface of the unit sphere in n - 1 dimensions. The
points x and y are separated by an angle COSC’ (x . y) =
cos -’ (sin2 cr + z . ~(30s~~ cy), while z and w are separated by
cos-l (z . w).

For each i and a = &(i + l/2)8 we have M(n -
1, arccos* (cos 6 - sin2 a)/cos2 (u)) code points in n dimensions
with first coordinates equal to cos OL and a minimum separating
angle 2 0. Note that when (cos 0 - sin2 (Y)/COS~ (Y c - 1, we
have precisely one point with a first coordinate equal to sin (Y
because M(n - 1,2a) = 1. Two code points x and y with
different first coordinates have their inner product x . y I
sinasinp + coso~cos~ = cos(a! - /3) I costi. Hence cos-‘(.x
. y) 2 8. By summing over all legal values of i, we obtain the
apple-peeling bound.

In two dimensions it is easy to show that M(2,fI) = [27r/Ol
for 0 < 0 I 27r. This, together with the apple-peeling theorem,
gives us the sixth column of Table VI. Note that when cos ((i +
l/2)8) = 0, then cos 0 - sin2 ((i + l/2)8) < 0, and we take
arccos*[(cos 8 - sin2 ((i + 1/2)e))/cos2 ((i + l/2)8)] = 271.

The apple-peeling construction provides large codes in many
dimensions. Although lattices provide the best-known lower
bounds fpr kissing numbers (0 = ST/~) and excellent lower bounds
in eight and 24 dimensions [16], [19], [20], [21], [31], the apple-
peeling bound works well in other cases [32]. An additional
advantage of the apple-peeling bound is its ease of implementa-
tion in any dimension. Equivalent or superior bounds may exist
in the literature. The studies made here are preliminary.

We have also investigated another construction method based
on certain lattices in n-dimensional space. First, choose k real
numbers x1, x2;.., xk and k integers n,, n2,“‘, nk which add
up to n. The collection of points with ni coordinates being x,
and with the n, satisfying certain constraints form a spherical
code. The minimum separating angle and the size of the code can
be calculated for specific choices of the xi and the constraints on
the n,. For example, the set of n-dimensional vectors with
coordinates taken from (0, l/ 6, - l/ 6) and with exactly m
nonzero coordinates forms a spherical code with 2m(i) code
points and a minimum separating angle = COSK’ (1 - (l/m)).
The lattice construction presented earlier can be used in combi-
nation with the apple-peeling bound to produce good lower
bounds to the size of spherical codes.

EL GAMAL et cd.: USING SIMULATED ANNEALING TO DESIGN GOOD CODES

REFERENCES

PI

PI

[31

[41

[51

[61

[71

PI

[91

PO1

[ill

W I

1131

N. Metropolis, A. W . Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equation of state calculations by fasting computing
machines,” J. Chem. Phys., vol. 21, June 1953.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671-680, May 1983.
D. S. Johnson, L. McGeoch, C. Rodriguez, and C. Schevon, “Opti-
mization by simulated annealing: An experimental evaluation,”
presented at the Workshop on Statistical Physics in Engineering and
Biology, Apr. 1984.
D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, “How
easy is local search?” in Proc. 26th Symp. Foundations of Computer
Science, Ott 1985, pp. 39-42.
M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco, CA:
Freeman, 1979.
F. Romeo, C. Sechen, and A. Sangiovanni-Vincentelli, “Simulated
annealing research at Berkeley, ” in Proc. IEEE Int. Conf. Com-
puter Design, 1984, pp. 652-657.
M. P. Vecchi and S. Kirkpatrick, “Global wiring by simulated
annealing,” IEEE Trans. Comput. Aided Des. Integrated Circuits
Syst., vol. CAD-2, pp. 215-222, Oct. 1983.
S. White, “Concepts of scale in simulated annealing,” in Proc.
IEEE Int. Conf. Computer Design, 1984, pp. 646-651.
M. Lundy “Applications of the annealing algorithm to combina-
torial problems in statistics,” Biometrika, vol. 72, pp. 191-198,
1985.
R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.
S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals
and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.
F. J. MacWil l iams and N. J. A. Sloane, The Theory of Error-Cor-
recting Codes. New York: North-Holland, 1977.
R. L. Graham and N. J. A. Sloane, “Lower bounds for constant
weight codes,” IEEE Trans. Inform. Theory, vol IT-26, pp. 31-43,
Jan. 1980.
J. H. Conway and N. J. A. Sloane, “Lexicographic codes: Error-
correcting codes from game theory,” to appear.
I. F. Blake, “The Leech lattice as a code for the Gaussian channel,”
Inform. Contr., vol. 19, pp. 66-74, 1971.
A. Gersho, “Asymptotically optimal block quantization,” IEEE
Trans. Inform. Theory, vol. IT-25, pp. 373-380, 1979.
L. Shepp, “Computerized tomography and nuclear magnetic reso-

[I81

P91

W I

W I

W I

[231

v41

~251

W I

[271

W I

v91

[301

[311

~321

[331

[341

123

nance,” J. Comput. Assisted Tomog., vol. 4, pp. 94-107, Feb. 1980.
N. J. A. Sloane. “Tables of sohere uackinas and snherical codes.”
IEEE Trans. Inform. Theory:vol. fT-27, pp. 327y338, May 1981.
-, “Recent bounds for codes, sphere packings, and related
problems obtained by linear programming and other methods,” to
appear.
H. S. M. Coxeter, “The problem of packing a number of equal
nonoverlapping circles on a sphere,” Trans. N. Y. Acad. Sci., series
II, vol. 24, pp. 320-331, Jan. 1962.
J. W . Greene and K. J. Supowit, “Simulated annealing without
rejected moves,” in Proc. IEEE Int. Conf. Computer Design, 1984,
pp. 658-664.
J. L. Lutton and E. Bonomi, “An efficient non-deterministic heuris-
tic for the min imum weighted perfect Euclidean matching problem:
The Metropolis algorithm,” preprint.
A. El Gamal and I. Shperling, “Design of good codes via simulated
annealing,” presented at the Simulated Annealing Conf., Yorktown
Heights, NY, 1984.
L. A. Hemachandra and V. K. Wei, “Using simulated annealing to
calculate combinatorial constants,” in Proc. 22nd Annual Allerton
Conf. Communication, Control, and Computing, Oct. 3-5, 1984, pp.
545-552.
S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans.
Inform. Theory, vol. IT-28, pp. 129-137, 1982.
A. R. Calderbank, J. E. Maze, and V. K. Wei, “Asymptotic upper
bounds on the min imum distance of trellis codes,” IEEE Trans.
Commun., vol. COM-33, pp. 305-309, Apr. 1985.
A. D. Wyner, “Capabilities of bounded discrepancy decoding,”
Bell Syst. Tech. J., vol. 44, pp. 1061-1122, July/Aug. 1965.
C. E. Shannon, “Probability of error for optimal codes in a
Gaussian channel,” Bell Syst. Tech. J., vol. 38, pp. 611-656, May
1959.
R. A. Rankin, “The closest packing of spherical caps in n-
dimensions,” Proc. Glasgow Math. Ass., vol. 2, pp. 139-144, 1955.
T. Tarnai and Z. S. Gaspar, “Improved packing of equal circles on
a sphere and rigidity of its graph,” Math. Proc. Cambridge Phil.
Sot., vol. 93, part 2, pp. 191-218, Mar. 1983.
L. Hemachandra and V. K. Wei, “A note on the size of spherical
codes,” Bell Commun. Res., Tech. Memo., 1984.
A. Gersho, “Quantization,” IEEE Commun. Sot. Mag., vol. COM-
15, pp. 16-29, Sept. 1977.
S. Romeo and S. Sangiovanni-Vincentelli, “Probabilistic hill-climb-
ing algorithms: Properties and applications,” in Proc. Chapel Hill
Con/. VLSI, 1985, pp. 393-418.
B. Hajek, private communication.

