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Information
(Classical)

Quantum Information



Information  =  Distinguishability. 

(Using a pencil, a piece of paper can be put into a 
various states distinguishable at a later time.)

 - Information is reducible to bits ( 0 ,1 )

 - Information processing, to reveal implicit truths, 
   can be reduced to logic gates (NOT, AND )

 - bits and gates are  fungible,  independent of
   physical embodiment, making possible Moore's law

 
- (classical) information 
    - can be copied at will without disturbing it
    - cannot travel faster than light or backward in time



   But information in microsopic bodies such as 
   photons or nuclear spins obeys quantum laws.
   Such quantum information

   - cannot be read or copied without disturbance.

   - can connect two spacelike separated observers
     by a correlation too strong to be explained by
     classical communication.  However, this
     "entanglement" cannot be used to send a message 
     faster than light or backward in time.

Quantum information is reducible to  qubits  
 i.e. two-state quantum systems such as a 
 photon's polarization or a spin-1/2 atom. 

Quantum information processing is reducible to
one- and two-qubit gate operations.

Qubits and quantum gates are fungible among
different quantum systems



Ordinary classical information, such as one finds in a book, can
be copied at will and is not disturbed by reading it.

• Trying to describe your dream 
changes your memory of it, 
so eventually you forget the 
dream and remember only what 
you’ve said about it. 

• You cannot prove to someone else 
what you dreamed.

• You can lie about your dream and not get caught.

But unlike dreams, quantum information obeys well-known laws.

Quantum information is more like
the information in a dream



I. To each physical system
there corresponds a Hilbert
space    of dimensionality equal
to the system's maximum num-
ber of reliably distinguishablee
states.
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2. Each direction (ray) in the 
Hilbert space corresponds to a 
possible state of the system.

3. Spontaneous evolution of an
unobserved system is a unitary
transformation on its Hilbert
space.
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1. A linear vector
space with com-
plex coefficients
and inner product
< φ | ψ  >  = Σ  φ    ψ
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2.  For polarized 
photons two,  e.g. 
vertical and horizonal 
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4.  Unitary = Linear and
inner-product preserving.
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-- more --

ii

Quantum laws



4. The Hilbert space of a com- 
posite sysem is the tensor 
product of the Hilbert spaces
of its parts.  1

5. Each possible measurement  2
on a system corresponds to a 
resolution of its Hilbert space 
into orthogonal subspaces  { P  },

where   Σ P  = 1.   On state
ψ  the result  j  occurs with 
probability  |P  ψ|  and the 
state after measurement is

2

 j 

 j 

 j 

P |   >ψ j 

|P |   >| j ψ

1 . Thus a tw o-photon
system  can exist in  
"product states"  such as
              and   
but also in  "entangled"
state s such as 

2  B elievers in  the  "m any
w orlds interpreta tion" reject
this ax iom as ug ly and  
unnecessary.  For them 
m easurem ent is just a unitary
evo lution producing an 
entangled state o f the  system
and  m easur ing apparatus.
For others,  measurem ent 
causes the  system to  behave
probab ilistically  and forget
its pre-m easu rem ent state,
unless that state  happens to
lie  entirely w ithin one  of the
subspaces P  . j 

in w hich neither 
ph oton has a  definite  
state  even thou gh the 
pa ir together does



Between any two reliably distinguishable 
states of a quantum system 
(for example horizontally and vertically polarized single photons)

there exists a continuum of intermediate states (representable 
as complex linear combinations of the original states) that in 
principle cannot be reliably distinguished from either original 
state. 
(for example diagonal polarizations)



probability sin2 θ

probability cos2 θ

Calcite crystal Detectors
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Vθ  polarized photons

(Mathematically, a superposition 
is a weighted sum or difference, 
and can be pictured as an 
intermediate direction in space)
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Non-orthogonal states like        and       are 

in principle imperfectly distinguishable.

         always behaves somewhat 

like            and vice versa.  This is the

basis of quantum cryptography.



Measuring an unknown photon’s polarization exactly is 
impossible (no measurement can yield more than 1 bit about it).

Cloning an unknown photon is impossible.  (If either cloning or 
measuring were possible the other would be also).

If you try to amplify an unknown photon by sending it into an 
ideal laser, the output will be polluted by just enough noise (due 
to spontaneous emission) to be no more useful than the input in 
figuring out what the original photon’s polarization was.

28.3o
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Shared Secret Key

Eve, the
Eavesdropper

In the end, Alice and Bob will either agree on a shared secret key, or else they will 
detect that there has been too much eavesdropping to do so safely.  They will not, 
except with exponentially low probability, agree on a key that is not secret. 

Quantum Cryptographic Key Distribution
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Any quantum data processing 

can be done by  1- and 2-qubit 

gates acting on qubits.

The 2-qubit XOR or "controlled-NOT" gate flips its 

2nd input if its first input is 1, otherwise does nothing.

A superposition of inputs gives a superposition of outputs.

An   or EPR tate.  
or EPR state
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The two photons may be said to be in a definite state of 
sameness of polarization even though neither photon has
a polarization of its own.

/+
2

=

Entanglement is an intense and private kind of correlation 
• A and B can be in a definite state, even though each is random 
• Monogamy: If A and B are maximally entangled with each other, 
they cannot be even classically correlated with anyone else. 
(Classical correlation is just a common, prosaic manifestation of entanglement) 

(cf Haight-Ashbury, Summer of Love, 1967)



Alice

Bob

Prior sharing of an EPR pair allows Alice to disembody an unknown 
qubit into a 2-bit classical message and preexisting entanglement.  
When Bob receives the classical message, he can reconstruct the 
unknown state exactly, but cannot copy it.  The EPR link from Alice 
to Bob goes backward in time, but cannot by itself carry any 
meaningful message.

Entanglement is useful for Quantum Teleportation, 
a way to transmit quantum information when no quantum channel is available.

Classical message

unknown quantum state

teleported state

BBCJPW ’93



Alice

Bob

Quantum Teleportation

2 bit classical message

Teleported qubit

Unknown qubit

Alice

Bob

Quantum Superdense Coding  

1 Qubit noiseless 
quantum channel

2 Classical
 bits in

2 Classical
 bits out

1 Qubit noiseless 
quantum channel

doubles the classical capacity of any noiseless quantum channel

A dual process
to teleportation

Here Alice does 
the Pauli rotation 
and Bob does the 
Bell measurement.



Alice performs a joint 
measurement of the unknown 
input qubit  ψ and her half of 
the shared EPR pair in the so-
called Bell basis

|00> +|11>
|00> -|11>
|01> +|10>
|01> -|10>

According to Alice’s result, Bob 
performs one of four unitary 
transformations, the so-called Pauli 
operators  I, X, Y, and Z,  
on his half of the EPR pair. 

I (do nothing)  (  )
Z phase shift   (  )
X bit flip      (  )
Y flip & shift  (  )

Alice’s and Bob’s roles in teleportation

Result: Bob’s qubit is left in the same state as Alice’s  was in before 
teleportation.  If Alice’s qubit was itself entangled with some other 
system, then Bob’s will be when the teleportation is finished. 

1   0
0   1
1   0
0  -1

0   1
1   0

0  -1
1   0
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Expressing classical data processing in quantum terms.

A classical bit is just a qubit with one 
of the Boolean values    0    or   1.

A classical wire is a quantum channel that conducts  0 and 1
faithfully, but randomizes superpositions of  0  and  1.

(This occurs because the data passing 
through the wire interacts with its environment, 
causing the environment to learn the value of 
the data, if it was 0  or  1, and otherwise 
become entangled with it.)
  
A classical wire is a quantum wire 
with an eavesdropper.  

A classical circuit is a quantum circuit
with eavesdroppers on all its wires.

Information
(Classical)

Quantum Information

A classical channel is a quantum 
channel with an eavesdropper.

A classical computer is a quantum 
computer handicapped by having 
eavesdroppers on all its wires. 



Fast Quantum Computation

(Grover algorithm)

(Shor algorithm)

(For a quantum computer, factoring is about as easy 
as multiplication, due to the availability of entangled 
intermediate states.)

(For a classical computer, factoring appears to be exponentially harder than multiplication, 
by the best known algorithms.)



A Computer
can be compared
to a StomachClassical 

Computer

Quantum Computer

n-bit input

n-bit output

Because of the superposition principle and the
possibility of entanglement, the intermediate 
state of an n-qubit quantum computer state 
requires 2n complex numbers to describe, 
giving a lot more room for maneuvering 

a|0000>+b|0001>+c|0010>+d|0011>+…

n-bit intermediate 
state e.g. 0100



How Much Information is “contained in” n qubits, 
compared to n classical bits, or n analog variables?

Digital            Analog               Quantum

Information 
required  
to specify
a state 

Information 
extractable
from state

n bits  

n bits

2n complex 
numbers

n bits

n real 
numbers

n real 
numbers

Good error                                               
correction              yes             no                     yes



Classical Communication Theory—central notions
•Data Compression and Source Entropy
•Error-correcting Codes and Channel Capacity

Encoder Decoder

If an information source is redundant (due to unequal letter 
frequencies or correlations among letters) its output can be 
compressed, then faithfully recovered at the receiving end.  A 
source’s Shannon Entropy is the compressed size above which 
faithful recovery is possible, and below which it is impossible.



Classical Communication Theory—central notions
•Data Compression and Source Entropy
•Error-correcting Codes and Channel Capacity

Encoder Decoder

Error correcting codes can be used to send information with 
arbitrarily high reliability through a noisy channel at any rate
up to but not exceeding the channel’s Capacity. Simplest error 
correcting code is triple repetition.



C(N) =   maxX [ H(X) + H(N(X)) – H(X,N(X)) ]

In other words, a channel’s capacity is the maximum, over 
input distributions, of the Shannon mutual information 
between input and output. 

The Shannon entropy of a classical source X and the 
capacity of a classical noisy channel  N both have simple 
mathematical expressions.

H (X) =  −Σx p(x) log p(x),   

where p(x) is the probability that the random variable X takes the 
value x. 



Besides characterizing sources and channels, classical 
information theory aims to understand the role of auxiliary 
resources, such as shared randomness between sender and 
receiver, and free back communication (feedback) from 
receiver to sender.  

Their role is simple: neither shared randomness nor back 
communication increases the capacity of a classical 
channel.

CR=CB=C

(However shared randomness, in the form of a one-time pad, 
makes it possible to communicate secretly over a public channel. 
Back communication, though it doesn’t increase capacity, 
reduces encoding/decoding effort and latency.)



Shared randomness is also useful in characterizing the 
ability of channels to simulate one another.  

The classical Reverse Shannon Theorem states that in the 
presence of shared randomness the capacity of a channel 
M to simulate another channel N is simply the ratio of their 
plain capacities. 

CR(M,N)  =  C(M) / C(N)

More precisely, it establishes the ability of M, with shared random-
ness, to exactly simulate the input:output behavior of  N on any block 
size, at an expected rate approaching C(M)/C(N) in the limit of large 
block size. (quant-ph/0106052=IEEE Trans. Info. Theory 48, 2637-2655 (’02) 
with P. Shor, J. Smolin, A. Thapliyal;  A. Winter quant-ph/0208131, )



Why doesn’t shared randomness improve the capacity of a 
classical channel?  

Shared randomness doesn’t help because any encoder/ 
decoder pair trying to simulate a noiseless channel can be 
derandomized:  If the encoder/decoder pair works when 
the shared information R is chosen randomly, there must 
be a particular value  R=r for which it also works.  
Picking this  r and always using it gives a deterministic 
encoder/decoder that works at least as well as the 
randomized one. 

But entanglement can increase the capacity of a quantum 
channel because, unlike randomness, entanglement is not a 
kind of ignorance, and so cannot be derandomized.



Unitary evolution is reversible, preserving distinguishability.

But quantum systems in interaction with an environment can 
undergo irreversible loss of distinguishability.

• noisy or lossy channels, which lose classical information
• classical wires, which spoil superpositions
• erasure, which destroys distinguishability completely

Any physically possible evolution of an open quantum 
system can be modeled as a unitary interaction with an 
environment, initially in a standard 0 state.

0
0

U=



Q   plain quantum capacity = qubits faithfully trasmitted per channel use, 
       via quantum error correcting codes

C   plain classical capacity = bits faithfully trasmitted per channel use 

QB   quantum capacity assisted by classical back communication
Q2   quantum capacity assisted by classical two-way communication

CE     entanglement assisted classical capacity i.e. bit capacity in the 
         presence of unlimited prior entanglement between sender and
         receiver.

Multiple capacities of Quantum Channels

Bob

AliceAlice
Noisy quantum channel

For quantum channels, these assisted capacities can be greater than the 
corresponding unassisted capacities.



U

Φρ ρ
I⊗N))(Φ  )ρ

N(ρ)(

RQρ
Q Q

RρR

0 E(ρ)(
E

Entropic quantities related to channel capacities.

C =? CH = Holevo cap. =  max  S(N(ρ)) −Σpi S(N(ρi))

Q = Coherent Info. =  lim max   S(N⊗n(ρ)) −S(E⊗n(ρ))/n

CE = Quantum Mutual Info. = max  S(ρ) + S(N(ρ)) −S(E(ρ))

Q2  ≈ Distillable entanglement =

Shor,
Lloyd,
Devetak

lim max D2(I⊗N⊗n(Φρ))/n = ?

n→∞ ρ

(Unfortunately D2 has no simple expression,  may be nonconvex.  
Even Q is  grossly non-additive, as Smith and Yard showed last week.)

=  if min.
output en-
tropy is
additive
Shor ’03

BSST 
‘01

n→∞ ρ

ρ

{pi ,ρi}
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Erasure Probability

Capacities of Quantum Erasure Channel

Quantum Erasure Channel

input qubit sometimes  los t 

Simple illustrative example



En-
coderΨ

De-
coder

De-
coder

Ψ

Ψ

Because of this its unassisted quantum capacity Q must be zero.
If this were not the case, the splitter could be used together with an 
encoder and two decoders to clone unknown quantum states.

Symmetric
Splitter

50%
Erasure
channel

A 50% erasure channel can be viewed as one output of a 
symmetric splitter.  



But when assisted by classical communication or shared 
entanglement, the 50% erasure channel acquires a nonzero 
quantum capacity:

With Classical 2-way communication 
• Alice uses the erasure channel to send Bob halves of EPR pairs.
• Bob reports back classically which ones arrived successfully.
• Alice uses these and forward classical communication to teleport 
the quantum input to Bob 

With Shared Entanglement
• With the help of ordinary Shannon coding, Alice uses the erasure 
channel’s forward classical capacity (50%) to send Bob the 
classical bits needed for teleportation.  They already have the other 
resource required, viz Alice-Bob entanglement. 

With Classical Back Communication alone 
• Combine the two constructions above 



The quantum states we have been talking about so far, identified with rays 
in Hilbert space, are called  pure states.  They represent situations of 
minimal ignorance, where there is nothing more to know about the system.  
Pure states are fundamental in the sense that the quantum mechanics of 
any closed system can be completely described as a unitary evolution of 
pure states, without need of further notions.  However, a very useful 
notion, the mixed state,  has been introduced  to deal with situations 
of greater ignorance,  in particular

Mixed States and Density Matrices

an ensemble   E   in which the system in question  may be in 
any of several pure states ψ  ,  ψ  ...  with probabilities  p , p ....

a situation in which the system in question (call it A ) is
part of larger system  AB, which itself is in an entangled

pure state Ψ(AB).

12 21

In open systems, a pure state may naturally evolve into a mixed 
state (which can also be described as a pure state of a larger
system comprising the original system and its environment) 



A mixed state is represented by a Hermitian, 
positive-semidefinite, unit-trace density matrix

ρ   =   Σ  p  | ψ  〉〈 ψ  |i

ρ(A)   =   Tr   | Ψ(AB) 〉〈 Ψ(AB) |
B

 

for an ensemble

for a subsystem

ρ   =    | ψ  〉〈 ψ  | for a pure state(  )

i ii

Different ensembles can have the same density matrix.  For 
example any equal mixture of two orthogonal polarizations has  

ρ = ( 1/2   0 )    What common feature does ρ represent?  0   1/2



The density matrix represents  all  and  only that information which 
can be learned by sampling the ensemble or observing the A part 
of the compound system.  Ensembles with the same ρ  are 
indistinguishable.  Pure states Ψ(AB) with the same ρ(A) are 
indistinguishable by observing the A part.

If Alice and Bob share a system in state Ψ(AB),  then,  for any 
ensemble E  compatible with  ρ(A),  there is a measurement

Bob can do on his subsystem alone, which generates the ensemble, 
in the sense that the measurement yields outcome   i  with 

probability  pi , and, conditionally on that outcome having 

occurred, Alice's subsystem will be left in pure state ψi .

Meaning of the Density Matrix

(Hughston-Jozsa-Wootters/Schroedinger theorem)



The Church of the Larger Hilbert Space

This is the name given by John Smolin to the habit of always 
thinking of a mixed state as a pure state of some larger 
system; and of any nonunitary evolution as being embedded in 
some unitary evolution of a larger system: No one can stop us 
from thinking this way; and Church members find it satisfying 
and helpful to their intuition:

This doctrine only makes sense in a quantum context; where 
because of entanglement a pure whole can have impure parts:  
Classically; a whole can be no purer than its most impure part.
(Cf. Biblical view of impurity:  If thy eye offend thee, cast it out.)
But this does not bother Church members; who tend to believe 
that the classical (including Biblical) world is an emergent 
phenomenon from an underlying quantum reality.



Nρ N(ρ)(

U
0 E(ρ)(
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Input viewed as entangled 
with a reference system R

Equal entropy

Noisy channel viewed as 
interaction with environment 

CLHS invoked to 
purify noisiness of 
channel

CLHS invoked again 
to purify mixedness 
of input
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N(ρ)(

RQρ
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N

Entanglement-Assisted capacity CE of a quantum channel N is equal to 
the maximum, over channel inputs ρ, of the input (von Neumann) entropy 
plus the output entropy minus their “joint” entropy

CE (N) = maxρ S(ρ)  + S(N(ρ)) − S(N⊗I(Φρ))

(entangled 
purification 
of  ρ)

(more precisely the 
joint entropy of the output and a reference system entangled with the late 
input) (BSST 0106052, Holevo 0106075).  

In retrospect, entanglement-assisted capacity, not plain classical capacity,  is 
the natural quantum generalization of the classical capacity of a classical 
channel.  What Shannon actually found in 1948 was a nice formula for the 
entanglement-assisted capacity of a classical channel.

QE = CE / 2  for all channels, by teleportation & superdense coding.



B

A
≈mCE(N) 
classical bits)

≈ N ⊗m
In particular, for all channels on tensor power sources  ρ = ρ⊗m (the 
quantum analog of classical Independent Identically Distributed sources)  

CE(M,N)  =  CE(M) / CE(N).

Thus, for these sources, in the presence of a shared entanglement, all 
quantum channels can be characterized by a single parameter, CE .

Quantum Reverse Shannon Theorem 
(I.Devetak, A. Harrow, P. Shor and A. Winter, and CHB)

With some restrictions on the source ρ and channel N (or some enlargement of 
the notion of entanglement) any quantum channel N  can be simulated 
asymptotically perfectly in the limit of large block size by prior entanglement and 
an amount of classical communication approaching the channel’s entanglement 
assisted capacity.  
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A’

B’

U
A

0

A’

B’

U
A

0 B’

Env

Gate

Isometry,
a.k.a. 
channel
with quantum
feedback

Channel,
a.k.a.     
CPTP map

Gates, Isometries and Channels

Cf classical 
feedback, where 
wlog Bob gets a 
copy of output



B

I(C;A)/2
Ebits in I(C;B)/2

Ebits out

I(C;R|B)/2 
=I(C;R|A)/2 

=[H(C|A) +H(C|B)]/2
Qubits sent

Quantum State Redistribution (Devetak & Yard; Oppenheim):
Reversible Communication and Entanglement costs of transferring subsystem
C from Alice’s lab to Bob’s, in the presence of non-moving local subsystems A 
and C, while maintaining intact entanglement with a passive reference system R.  

A

C

A

R R

C

B



Waste 
Heat

Alice

Bob

Prior 
entanglement

Prior 
entanglement

Classi-
cal com-
munication

Physical
Inter-
action

Quantum

Communication

Initial 
state

e-iHt
ρ Q(ρ)

Final state

N

An important general goal of quantum information theory is to understand 
the nonlocal resources, and tradeoffs among them, needed to transform 
one state of a multipartite system into another, when local operations are 
unlimited. 

unlimited local operations

unlimited local operations



Summary and Conclusion

• The quantum arena is simpler and grander

• Many classical notions, when carried over straightforwardly 
to the quantum realm, get ugly and complicated.

• Additivity of classical capacity
• Quantum capacity

• But when appropriately generalized, they can become simple 
again

• Entanglement-assisted capacity
• Coherent, channel simulation and state redistribution

• In the quantum realm, there are more toys to play with and 
resources to trade off against one another: classical and 
quantum communication, interaction, entanglement..



Extra slides



Classically, there are distinct kinds of interaction 
that cannot be substituted for one another.  For 
example, if I’m a speaker and you’re a member 
my audience, no amount of talking by me 
enables you to ask me a question.

Quantumly, interactions are intrinsically 
bidirectional. Indeed there is only one kind 
of interaction, in the sense that any 
interaction between two systems can be used 
to simulate any other.

One way in which quantum laws are simpler than 
classical is the universality of interaction. 



A quantum love story,  based on the classic tale 
of Pyramus and Thisbe.

Alice and Bob are young and in love.

Unfortunately, their parents oppose their relationship, 
and have forbidden them to visit, or talk, or exchange email.

Fortunately, they live next door to one another.

Unfortunately, there's a wall between their two houses.

Fortunately, there's a hole in the wall.

                                -- more --



Unfortunately, the hole 
is only big enough 
for one atom of Alice
to interact with one 
atom of Bob, via an 
interaction H' .

Fortunately, Alice and Bob know quantum mechanics.
They know that any interaction can be used to create
entanglement, and that interactions are intrinsically 
bidirectional and private:  A cannot affect B without 
B affecting A.   If C interferes or eavesdrops, the joint
state of A and B will be degraded and randomized.
                                -- more --



The young lovers wish to experience the life they would have had 
if they had been allowed to interact not by the one-atom inter-
action H' but by the many-atom interaction H, which is a physicist's 
way of saying always being in each other's arms.    

How can they use the available  H' to simulate the desired   H ?

They can of course separately prepare their respective interacting atoms
in any initial states, and thereafter alternate through-the-wall interactions 
under H' with local operations among their own atoms, each on his/her 
own side of the wall.  

Using the hole in the wall, they can prepare entangled states.  We 
assume each has a quantum computer in which to store and process 
this entanglement.   Whenever they need to communicate classically,
to coordinate their operations, they can use the interaction H' to do 
that too.  Thus the joint states they can experience are all those that 
can be achieved by shared entanglement and classical communication.  
Of course it will take a lot of time and effort.

                                              --  more  --



If their parents had only plugged the hole in the wall and allowed 
them unlimited email, their future would have been much bleaker.  

They could never have become entangled, and their relationship
would have remained Platonic and classical.  In particular, it
would have had to develop with the circumspection of knowing 
that everything they said might be overheard by a third party. 

As it is, with the hole remaining open, by the time they get to be
old lovers, they can experience exactly what it would have been 
like to be young lovers (if they are still foolish enough to want that).

                                         -- The End --

But this is all quantum states of A and B! 

The joint states they can experience are all those that can be achieved 
by shared entanglement and classical communication.  


