Quantitative Study of High Dynamic Range Image Sensor Architectures

Sam Kavusi and Abbas El Gamal
Department of Electrical Engineering
Stanford University
Scene DR > Image Sensor DR

Courtesy Pixim Corporation
DR Extension Methods

Several methods have been developed to extend image sensor DR

Deep submicron CMOS image sensor processes [Wuu ‘01] and vertical integration [Kozlowski ‘02] enable implementation of high DR, high fidelity methods

This work studies four such schemes:

- Time-to-saturation [Lule ‘99, Stoppa ‘02]
- Multiple-capture [Yang ‘99, Kleinfelder ‘01, Bidermann ‘03]
- Asynchronous self-reset with multiple capture [Liu ‘03]
- Synchronous self-reset with residue readout [Bermak ‘02, Rhee ‘03]
How should these methods be compared?

Methods can be partially compared based on their SNR [Yang ’99, El Gamal ’02]:
- Some schemes extend DR but at expense of SNR

This work:
- Quantify SNR for the four schemes
- Consider non-idealities due to implementation, especially due to pixel area constraint
Conventional (Reference) Sensor

- CCD, APS, CTIA

\[Q_{\text{max}} = 125,000e^- \]
\[\sigma_{\text{Readout-Ref}} = 5e^- \]
\[t_{\text{int}} = 30\text{msec} \]

SNR increases as \(i_{\text{ph}} \)

\[i_{\text{in}} = q\sigma_{\text{Readout}}/t_{\text{int}} \]
SNR increases as \(i_{\text{ph}}^2 \)

\[i_{\text{max}} = qQ_{\text{max}}/t_{\text{int}} \]
Time-to-Saturation

[Lule ‘99, Stoppa ‘02]

\[v(t_{\text{int}}) = V_{\text{max}} \]

\[t = t_{\text{sat}} \]

\[\hat{i}_{\text{ph}} \propto \frac{V_{\text{max}}}{t_{\text{sat}}} \]
Time-to-Saturation

[Lule '99, Stoppa '02]

- \(i_{\text{min}} = q\sigma_{\text{Readout}}/t_{\text{int}}\)
 - Similar to reference sensor
- \(i_{\text{max}}\) and SNR limited by:
 - \(t_{\text{sat}}\) inaccuracy due to comparator noise/delay, time-ramp inaccuracy, \(kTC\) of \(C_{T-\text{Ref}}\) (inaccuracy in \(t_{\text{sat}}\) measured by \(\sigma_{\text{sat}}\))
- \(i_{\text{max}} = qQ_{\text{max}}/\sigma_{\text{sat}}\)
\[Q_{\text{max}} = 125,000 e - \]
\[\sigma_{\text{Readout-Ref}} = 5 e - \]
\[t_{\text{int}} = 30 \text{ msec} \]

\[\sigma_{\text{sat}} = .0005 t_{\text{int}} \]

\[\text{DR} = 156 \text{ dB} \]

\[\sigma_{\text{sat}} = .004 t_{\text{int}} \]

\[\text{DR} = 136 \text{ dB} \]

SNR drops as \(1/i_{\text{ph}}^2 \)
Multiple-Capture

[Yang ‘99, Kleinfelder ’01, Bidermann ’03]

\[v(t_{\text{last-sample}}) = V_{\text{last}} \]
\[t_{\text{last-sample}} = j t_{\text{capt}} \]
\[\hat{i}_{ph} \propto V_{\text{last}} / (j t_{\text{capt}}) \]
Multiple-Capture
[Yang ‘99, Kleinfelder ’01, Bidermann ’03]

\[v(t) \]

\[\int i_{ph} \]

\[\text{ADC} \]

\[\text{Filter} \]

\[\hat{i}_{ph} \]

\[\text{Pixel} \]

\[\text{Capture Clock} \]

\[v(t_{\text{last-sample}}) = V_1 \]

\[t_{\text{last-sample}} = t_{\text{int}} \]

\[\hat{i}_{ph} \propto V_1/t_{\text{int}} \]
Multiple-Capture
[Yang ‘99, Kleinfelder ‘01, Bidermann ‘03]

- $i_{\text{min}} = q\sigma_{\text{Readout}}/t_{\text{int}}$
 - × Pixel-level ADC resolution limited (ADC-ramp, speed/resolution trade-off)
 - ✓ Digital weighted averaging is possible [Liu ’03]
 - ✓ Increasing t_{int} is possible by motion blur prevention [Liu ’03]

- $i_{\text{max}} = qQ_{\text{max}}/t_{\text{capt}}$
 - ✓ Capture time is very accurate
$Q_{\text{max}} = 125,000e^-$
$\sigma_{\text{Readout–Ref}} = 5e^-$
$t_{\text{int}} = 30\text{msec}$

$\sigma_{\text{Readout}} = 35e^-$
$t_{\text{capt}} = 150\mu\text{sec}$
$\text{DR} = 117\text{dB}$

$\sigma_{\text{Readout}} = 70e^-$
$t_{\text{capt}} = 100\mu\text{sec}$
$\text{DR} = 114\text{dB}$
Asynchronous Self-Reset

[Liou ’02]

\[v(t) \]

\[V_{\text{max}} \]

\[\tilde{i}_{ph} \]

\[t_{\text{int}} \]

\[t_{\text{capt}} \]

\[\tilde{i}_{ph} \propto v'(t) \]
Asynchronous Self-Reset

\[i_{\text{min}} = q \sigma_{\text{Readout}} / t_{\text{int}} \]
\[i_{\text{max}} = q Q_{\text{max}} / t_{\text{capt}} \]

- SNR better than MC but with higher DSP cost:
 - ADC resolution limited (ADC-ramp, speed/resolution trade-off)
 - Digital weighted averaging can compensate for it
 - Increasing \(t_{\text{int}} \) is possible by motion blur prevention [Liu ’03]
 - Self-reset accuracy is relaxed

- SNR increasing but limited by gain FPN
\[Q_{\text{max}} = 125,000e^- \]

\[\sigma_{\text{Readout-Ref}} = 5e^- \]

\[t_{\text{int}} = 30\text{msec} \]

\[\sigma_{\text{Readout}} = 35e^- \]

\[t_{\text{capt}} = 150\mu\text{sec} \]

\[\text{DR} = 117\text{dB} \]

\[\sigma_{\text{Readout}} = 70e^- \]

\[t_{\text{capt}} = 100\mu\text{sec} \]

\[\text{DR} = 114\text{dB} \]
Synchronous Self-Reset with Residue Readout

[Beamak '02, Rhee '03]

\[\hat{\mathit{i}}_{ph} \propto n_{\text{Reset}} + \frac{v(t_{\text{int}})}{V_{\text{max}}} \]
Synchronous Self-Reset with Residue Readout

\[i_{\text{min}} = q\sqrt{\sigma_{\text{Readout}}^2 + \sigma_{\text{Reset}}^2 / t_{\text{int}}} \]

\(\times \) Reset noise and ADC resolution

\(i_{\text{max}} \) and SNR at high end limited by:

\(\times \) Comparator and self-reset offset accumulation resulting in gain FPN (inaccuracy measured by \(\sigma_{\text{offset}} \))

\(\times \) Underestimation of \(i_{\phi} \) due to signal saturation

\[i_{\text{max}} = \sqrt{3}qQ_{\text{max}} / t_{\text{clk}} \]
\[Q_{\text{max}} = 125,000 \text{e}^- \]
\[\sigma_{\text{Readout-Ref}} = 5 \text{e}^- \]
\[t_{\text{int}} = 30 \text{msec} \]
\[\sigma_{\text{Reset}} = 55 \text{e}^- \]
\[t_{\text{clk}} = 1 \mu\text{sec} \]

SNR drops as \(1/i_{\text{ph}}^2 \)

\[\sigma_{\text{offset}} = 0.001 Q_{\text{max}} \]
\[\text{DR} = 161 \text{dB} \]

\[\sigma_{\text{offset}} = 0.01 Q_{\text{max}} \]
\[\text{DR} = 161 \text{dB} \]
Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>i_{min}</th>
<th>i_{max}</th>
<th>SNR</th>
<th>Pixel Mismatches Effect</th>
<th>DSP</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTS</td>
<td>=</td>
<td>++</td>
<td>−</td>
<td>High</td>
<td>Low</td>
<td>Comparator</td>
</tr>
<tr>
<td>MC</td>
<td>− /=</td>
<td>+</td>
<td>+</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Readout/DSP</td>
</tr>
<tr>
<td>Async</td>
<td>− /=</td>
<td>+</td>
<td>++</td>
<td>Moderate</td>
<td>High</td>
<td>Readout/DSP</td>
</tr>
<tr>
<td>Sync</td>
<td>− −</td>
<td>+++</td>
<td>− −</td>
<td>High</td>
<td>Moderate</td>
<td>Comparator/digital circuits</td>
</tr>
</tbody>
</table>