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Maximum Entropy and Conditional Probability 
JAN M. VAN CAMPENHOUT AND THOMAS M. COVER, FELLOW, IEEE 

Abstract- It is well-known that maximum entropy distributions, subject 
to appropriate moment constraints, arise in physics and mathematics. In an 
attempt to find a physical reason for the appearance of maximum entropy 
distributions, the following theorem is offered. The conditional distribution 
of X, given the empirical observation (1 /n)X:, ,/I ( X,) = (Y, where 
X, , X2, . are independent identically distributed random variables with 
common density g converges to fA( x) = e A’h(x)g( x) (suitably normalized), 
where X is chosen to satisfy jfx( x) h( x) dx = o. Thus the conditional 
distribution of a given random variable X is the (normalized) product of the 
maximum entropy distribution and the initial distribution. This distribution 
is the maximum entropy distribution when g is uniform. The proof of this 
and related results relies heavily on the work of Zabell and Lanford. 

I. INTRODUCTION 

T HE differential entropy N(X) of a random variable X 
with density function f(x) (with respect to Lebesgue 

measure) is defined by H(X) = - /-‘,“f< x) In f(x) dx. All 
of the well-known distributions in statistics are maximum 
entropy distributions given appropriate simple moment 
constraints. For example, the maximum entropy distribu- 
tion under the constraint EX2 = a2 is the normal distribu- 
tion with mean 0 and variance u2. The maximum entropy 
nonnegative random variable with mean m is exponentially 
distributed with parameter X = l/m. Even the Cauchy 
distribution is a maximum entropy distribution over all 
distributions satisfying E In (1 + X2) = (Y. In general, the 
maximum entropy density f(x) under the constraint 
P(x)f(x) dx = (Y,. where h is a vector-valued function of 
x, is of the form 

f(x) = exp (X, + XI/z(x)). (1) 

The constants X,, X are chosen so that f(x) is normalized 
and satisfies the moment constraint. An easy proof of (1) 
based on a convexity argument can be found in Kagan et 
al. [l, Theorem 13.2.1, p. 4091. 

The entropy H(X) is closely related to the disorder or 
uncertainty associated with making a realization of X. For 
that reason, maximizing the entropy is a method for find- 
ing distributions that represent high uncertainty or, equiva- 
lently, a state of high ignorance. For instance, in statistical 
mechanics, Boltzmann and others found the three-variate 
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normal distribution of velocities in gases as a maximum 
entropy distribution under an energy constraint. Similarly, 
one can derive thep( h) = he -hh, h 1 0, distribution of air 
density as a function of height in the earth’s atmosphere 
under the mean potential energy constraint l@(h) d/z = E. 

In statistics, the principle of maximum entropy has been 
used to obtain “uninformative” prior distributions in 
Bayesian inference. A paper by Jaynes [2] discusses pre- 
cisely this technique. Although the use of the maximum 
entropy principle for these purposes may seem ad hoc, 
maximum entropy distributions have some desirable prop- 
erties. Jaynes [2] comments, “. . . the probability distribu- 
tion which maximizes the entropy is numerically identical 
with the frequency distribution which can be realized in the 
greatest number of ways,” thus associating maximum ent- 
ropy with a definite frequency (or maximum likelihood) 
interpretation. 

This note attaches another concrete meaning to the 
maximum entropy distribution. It characterizes such a 
distribution as the limit of a sequence of conditional distri- 
butions. It is shown that, under certain regularity condi- 
tions, the conditional distribution of the first random vari- 
able X, in a sequence of independent identically distribu- 
tion (i.i.d.) random variables X,, X2,. . . , given the empiri- 
cal average (l/n)Z;h( Xi), converges to a maximum en- 
tropy distribution. More precisely, the limiting distribution 
f maximizes H,(X) = -lf(x)ln(f(x)/g(x))dx, the en- 
tropy relative to the initial distribution g of X,, subject to 
the constraint that jh(x)f(x) dx equals the observed aver- 
age. The quantity -H,(X) is also known as the Kullback- 
Leibler information number off relative to g. Thus among 
all distributions satisfying the above moment constraint on 
h( X,), the limiting conditional distribution f of X, mini- 
mizes the Kullback-Leibler number with respect to g. It 
follows that f is closest to g in a certain hypothesis testing 
sense. 

The convergence problem of conditional distributions 
has a long history. As early as 1922, in the then fully 
developing field of statistical mechanics, Darwin and 
Fowler [ 1 l] established their method to derive the energy 
distribution in large systems of particles with a given total 
energy. Through the computation of the average occupancy 
of the discrete energy levels, these authors arrived naturally 
at the classical energy distributions. Jaynes [12] relates 
Darwin and Fowler’s work to the Shannon maximum 
entropy principle. 

In an attempt to formalize statistical limits in statistical 
mechanics, Lanford [3] considers the convergence problem 
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of conditional distributions when an empirical average is 
conditioned in an interval that may or may not contain the 
mean of the underlying distribution. The same problem is 
considered by Bartfai [9] and Vincze [lo] from a statistical 
point of view. Zabell [4], on the other hand, studies prim- 
arily the convergence of conditional expectations when the 
conditioning is pointwise, but the points are in the neigh- 
borhood of the true mean. We extend Zabell’s work to 
conditioning at points “far” from the mean, and we will 
reinterpret the work of the above authors from a maximum 
entropy viewpoint. 

In Section II, we study the convergence properties of the 
special case in which the random variables X,, X2, * * * take 
values in the set {1,2;.*, m}. For pointwise conditioning 
far from the mean, the use of Chernoff’s tilting idea [5], [6] 
is clearly illustrated by this example. The idea will be used 
again in Section III, where we generalize Zabell’s result to 
conditioning at points far from the mean. The convergence 
of conditional distributions, under the condition that X has 
only a finite number of mass points, can be obtained by 
application of Stirling’s inequalities, as shown in the work 
of Vasicek [13]. In Section IV, we provide some examples 
in the case where the random variables have densities, and 
in Section V we review and interpret Lanford’s work and 
its implications. 

II. A SPECIAL CASE 

In this section we consider the case of discrete bounded 
random variables, and we give a direct proof of the follow- 
ing convergence theorem. 

Theorem I: Let X,, X2, . . . be i.i.d. discrete random 
variables with uniform probability mass function p(x) on 
the range x E { 1,2; . a, m}. Then, for 1 I (Y 5 m, and for 
all x, E { 1,2; . .,m}, we have 

lim 
“?” n a 1s mteger 

P{X,=x,l+ ;,&=a} =p*(x,), (2) 

where p*(q) = ehxl /iz 1 M ehi 
i=l 

I (3) 

is the maximum entropy probability mass function under 
the constraint Zxp*(x) = (Y, and X is chosen to satisfy this 
constraint. 

Proof: First we will prove that for any probability 
mass function q(x) > 0 on the range { 1,2,. . . , m} with 
a = E,X, = Zx,q(x,) we have 

i I 

n 

lim 4 x1; ,2x,=a 
i 

= 4(x, >. (4) n-03 
na is integer r=l 

Thus conditioning on the expected outcome has an 
asymptotically negligible effect. This proves (2) in the case 
where (Y = EX, = (m + 1)/2. The limiting distribution p* 
is obtained by setting X = 0 in (3). 

We then consider (2) in the case (Y # (m + 1)/2. We use 
Chernoff’s tilting idea to modify p(x) so that we are again 

conditioning on the expected outcome. Since the condi- 
tional distributions in (2) are invariant under tilting, Theo- 
rem 1 will follow. 

Let us turn to the proof of (4). Let na be an integer such 
that P{( l/n.)~~,, X = a} > 0. Letting S, = X, -I- X2 
+ . . . +X,, we have 

P{X,=jIS,= ncu} = 
P{X, =j, S, = ncu} 

P{S, = ncu} 

= d.av2 + *s-+X,= na -j} 

P{S, = ncu} 

= 4(j) 
P{S,-, = ncu -j} 

P{S,= new} . (5) 

Therefore, if we can prove that P{S,-, = na - j} is 
asymptotically independent of j E { 1,2,. . . ,m} as n --$ 00, 
it will follow that P{ X, = j] S,, = ncu} + q(j). The desired 
result is contained in the following lemma. 

Lemma 1: Let X,, X2, **a be i.i.d. random variables 
with probability mass function q(x) > 0 on x E 
{1,2,*.-, m}. With (Y = EX, and S,= Xi+ **.+X,,, we 
have P{ S,, = k}/P{S,, = k + 1 } + 1 for all integers k 
satisfying ] na - k( < A for some constant A. 

The proof of this lemma follows from a slight generaliza- 
tion of a problem in Chung [7, exercise 24, p. 1771, and is, 
in fact, a form of the Chung-Erdos strong ratio limit 
theorem. 

In the case that (Y # (m + 1)/2, let p(x) be the tilted 
probability mass function derived from p(x) as follows: 

p(x) = ceAx, x E {1,2;--,m}, (6) 

where c and h are chosen to satisfy 

Zp(x) = 1, zxJ?(x) = (Y. (7) 

Then clearly p(x) > 0 for all x E { 1,2; . .,m}; thus (4) is 
applicable. The properties of the tilting operation allow us 
to reconnect (4) with the original statement (2) as follows. 

First we observe that 

= ii1 (e-Xx~/c)P(xi) 

and thus that 

=C -ne-XZx~~(x,,...,x,), 

P{S,= nar} = 2 p(x,;.*,xn) 
x,+ . ..+x.=na 

--n -Am =c e 2 B(x,,**-,xJ 
x,+ . ..+x.=na 

= c-ne-““aF{Sn = new}. (8) 

From (8) it follows easily that the tilting transformation 
leaves the conditional distributions in (2) invariant. This 
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can be seen by using (5) and (8) as follows: 

P{X,= xJSn= na} 

= Ptx,PNl-* = ncJ - XI> 
P{S, = ncu} 

c-‘epAxlp(x,)c = 
‘-ne-*(-dp{Sn-, = n(y - x,} 

c -ne-AnaF{Sn = na} 

= P{X, = x,ISn= na}. (9) 

But j(X, = x,/S,, = na} --$ p(X, = x,) = ehxl/(2eXi), by 
(4), thus proving Theorem 1. 

Remark: The smooth behavior of the probability distri- 
bution of S,, at small deviations from its mean is crucial to 
the convergence in (4). These ideas are also borne out by 
the restrictions on the random variables Xi imposed by 
Zabell in the more general case (see Section III). Unlike the 
central limit theorem or the law of large numbers, the 
additional. conditions deal with the fine structure of S,, /n 
in the sense that deviations of the order l/n from the mean 
are considered. 

III. A LIMIT THEOREM FOR POINTWISE 
CONDITIONING 

We proceed with the generalization of the special case 
studied in Section II to lattice random variables that may 
be unbounded and to random variables with density func- 
tions. We start by reminding the reader of Zabell’s results 
[4] concerning the convergence of conditional expectations. 
We then apply the tilting transformation to these results to 
obtain the desired generalization. 

Zabell considers a sequence U, X,, X,, . . . of random 
variables where U has finite expectation and the pair 
(U, X, ) is independent of X,, X,, . . . . He derives a set of 
sufficient conditions under which it is true that 

E(UIX,+ -.+X,=A,) -E(U), (10) 

as n + co. These conditions can be summarized as follows. 
1) The random variables X,, X,, . . . take values in the 

same additive subgroup of Iw (or, more generally, in the 
same coset of an additive subgroup of W). 

2) Consider the normalized sums Y, = (X, + . . . +X, 
-A,)/&. Then there exist sequences {A,}, {B,} with 
B, + m such that Y, converges in distribution to a (nonde- 
generate) random variable Y. 

3) Let &(t) = E(exp(itY,)) and G(t) = E(exp(itY)) 
denote the characteristic functions of Y, and Y, respec- 
tively. Then either a) $n is periodic, and P{Yn = 0} > 0 for 
n sufficiently large; or b) \c, is absolutely integrable, I& is 
absolutely integrable for n sufficiently large, &, + Ic/ in L,, 
and Jlc, > 0. 

Condition 1) is the generalization of the regularity prop- 
erties of S,, derived in Section II. For i.i.d. random vari- 
ables Xi, i = 1,2; * ., this condition together with condi- 
tion 3) implies that the random variables are either of the 
lattice type (i.e., the Xi take values in {a + kb: k = 
0, 2 1, -c2, . . *}) or are real-valued and have a density 
function f(x) with respect to Lebesgue measure. 

For example, these conditions preclude the case Xi E 
(0, T, 5). In this case the event {X, + . . . +X, = nr} im- 
plies the event {X, = v}, for all probability mass functions 
p(x,). Thus clearly for all n, 

x, = 71 
otherwise, 

and Theorem 1 fails to hold even if rr were the true mean of 
P(X,). 

Letting U range over all bounded continuous functions 
of X,, we see that Zabell’s work implies the convergence of 
the conditional probability distribution of X, to its uncon- 
ditional distribution (see, for example, Chung [7, Theorem 
4.4.2, p. 891). 

We now limit our attention to i.i.d. random variables 
x,, x2, *. . having a density function f(x) with respect to 
Lebesgue measure. Rather than conditioning on X;X,, we 
consider a (Borel-measurable) function h: Iw + [w and con- 
dition on S,, = Z;h( Xi). We assume that h( X,) has a den- 
sity with mean p. The case of discrete conditioning vari- 
ables is completely analogous and was covered to some 
extent in Section II. 

It follows from (10) and conditions l)-3) that the center- 
ing constants A, must be “close” to np in order to ensure 
the nondegeneracy of the limit of (S, - A,)/B,,. Condi- 
tioning on the event {(l/n)& = cy}, a! # p, results in 
centering constants n(~ that are too far from np for (10) to 
hold. Under certain restrictions, an application of Cher- 
noff’s tilting idea allows us to move the mean of h( X,) to 
the conditioning point (Y, rendering (10) applicable. Again, 
the tilting leaves the conditional distributions invariant and 
thus provides us with the limit of these conditional distri- 
butions, conditioned at points off the true mean. 

More concretely, let f(x) and g(t) denote the probability 
densities of X, and h( X,), respectively. Consider the ex- 
ponential family 9 of densities indexed by X, 

9 = e”‘g(t)/c(h): c(X) =/e*‘g(t)dt-=C co . 
( I 

(11) 

Assume that 9 contains a density g*(t) = e”‘g(t)/c(h) 
with mean (Y. The desired tilting operation, then, changes 
the underlying probability measure P to a measure P*, 
under which h(X,) has the density g*(t). One can easily 
verify that changing the density of X, to 

f*(x) = e ““‘x’f(x)/C(A) (12) 

induces the density g*(t) on h( X,). 
Thus, applying (10) under the measure P* induced byf*, 

we have for all bounded continuous functions U( .), 

E* U(X,) i h(X;) = na - E*(U(X,)), (13) 
i 1 r=l I 

where E*(U(X,)) = ( lU(x)exh’“)f(x) dx)/c(h). The con- 
ditional expectation in (13) can be written as 

E*(U(X,)IS,,= na) =/U(x)P*{X, E dxlS,= na}. 

(14 



486 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 4, JULY 1981 

On the support set of S,, the conditional distribution of X, has density $(x; 0, n), and according to (15) we have 
can be written in terms of the conditional density of X, as 

P*{x, E dxlS,= t} =f+(x)g;-,(t - h(x))dx/gZ(t), 
f(xlS,=ncr)=+(x;O,l)+(na-x;O,n- l)/+(na;O,n) 

(15) 
=+(x; cq). 

where g,*(t) denotes the tilted density of S, = Z;h( Xi). Thus 
Equation (15) can be directly verified by the defining 
relation for conditional distributions ftxI& = na) - +t x; a, 1) = exa+(x; 0, l)/eaz/*, 

(16) Example 2: Exponential Random Variables 

As in Section II, it is easy to verify that the tilting Let X,, X2, . . . be i.i.d. exponential random variables 
transformation and convolutions commute, i.e., with parameter h. Let fs(x; n, p) denote the gamma den- 

&W = t4VP”‘g,tt). (17) 
sity with parameters n, II. Since S, has a gamma (n, nh) 
distribution we have 

From (12), (15), and (17) it follows readily that 

P*{X, E dxIS,= no} = P{X, E dxlS,= nay), (18) 
f(xILsn = na) = 

f,tx; 1, x)f,(na - x; n - 1, A) 

f,tna; n, A) 

and thus that 

E*{U(X,)IS,= no} = E{U(X,)IS,= no}, (19) 
=!IpK$)“-*. 

from which it follows that 
Thus 

E{ U(X,)lS, = no} + ( /U(x)ehhcx)f(x) dx )/c(h), 
f(xI&= na) + K’exp(-x/cr) 

= exp ((h - l/a)x)f,(x; 1, X)/X(u. 

(20) 
the desired extension of Zabell’s result (10). Thus we have Example 3: An Exception (Cauchy Random Variables 
proved the following. (EIXI = 00)) 

Theorem 2: Let X,, X2, . . . be i.i.d. random variables Let X,, X2, . . . be i.i.d. with Cauchy density fc(x; 0, l), 
with densityf(x), and let h: II% + Iw be a Bore1 measurable where f,(x; (Y, j3) = /3/~(/3* + (x - a)*). It is well known 
function. Let the random variables h( X,), h( X2), . . . have that S, has density fc(x; 0, n). Thus we find 
a density g(t). If there exists a real number X such that f(xI% = na> 

c(X) = Eexp (hh(X,)) < 00, =./Ax; O,l)f,tna - x; 0, n - l)/f,(nc 0, n) 
and = 

(Y= h(x)e Xh’“‘f(~) dx),c(h), 

f,tx;O, l)tn - l)(n* + (na)*) 

/n((n - l)‘+ (no - x)‘). 

and furthermore, if gh( t) = eh’g( t)/c( X) satisfies Zabell’s It follows that for every finite value of (Y we have 
conditions l)-3) then as n + 00, 

ftxI& = na> -f,tx; (Al), 

exh(“,f(x) dx)/c(X). pointwise in x. Thus conditioning on any (Y has an asymp- 
totically negligible effect. . , - - 

The reason for this exceptional behavior is that X, has 

IV. SOME EXAMPLES no mean and thus Theorem 2 is not applicable. It should 
be noted that even if El X, I k < cc for some k > 1 but 

We now give a few easy examples to illustrate Theorem P{ X, < -A} and P{ X, > A} approach zero less than ex- 
2. Note that Examples 1, 2, and 3 are established by direct ponentially fast, Zabell’s result is applicable, but not its 
calculation rather than by using Theorem 2. extension in Theorem 2. In this case the exponential family 

4 in (11) contains only one density corresponding to A = 0. 
Example 1: Gaussian Random Variables No tilted density g*(t) with mean (Y can be found. 

Let +(x; p, a*) denote the normal density with mean p 
and variance a*. Let X,, X,, * . ; be i.i.d. with density Example 4: The Maxwell-Boltzmann Distribution 

+(x; 0, 1) and let f(x(Z;X, =-no) denote the conditional Let the velocities V,, V,, . . . be i.i.d. vector valued ran- 
density of X, given x:X, = na. The sum S, = X, +‘. . . +X, dom variables (T.v.), each drawn according to a uniform 



VAN CAMPENHOUT AND COVER: MAXIMUM ENTROPY AND CONDITIONAL PROBABILITY 487 

distribution over the cube [-A, A13. Then, by Theorem 2, 

f 01: ,i 11~112= E + ce-tlo112/2E, 
( i 

u E [-A, A13. 
r=l 

Thus the limiting density is the multivariate normal density 
truncated to the prior range. 

V. CONDITIONINGON~NTERVALS 

In this section we review the limiting behavior of condi- 
tional distribution of a random variable X,, given that the 
empirical average of n independent observations h(Xi), 
i = 1,2;.* , n lies in an interval (a, b). Although the results 
presented here have the same flavor as the results discussed 
in Section III, they are quite distinct. For instance, the 
rather strong regularity conditions on S,, imposed by Zabell 
are absent here. (Essentially what is left is the additional 
condition allowing tilting imposed in Theorem 2.) Thus 
Zabell’s result cannot be obtained from the results estab- 
lished in this section. Conversely, one might be tempted to 
find the limit of P{X, 4 xla < n-‘Xh(Xi) < b} through 
an integration of P{X, I xln-‘Zh( Xi) = t} over t E 
(a, b). In order to do so, however, one would have to know 
the limiting distribution of n-‘Zh(Xi) on the interval 
(a, b), and furthermore one would have to verify the 
interchange of limits and integration as n + cc. Thus, 
again, the result in Theorem 2 is insufficient to provide the 
solution. 

In this section, a direct approach is taken toward the 
identification of lim .,,P{X,I xla < n-‘Zh(Xi) < b}. In 
contrast to the seemingly arbitrary way in which tilting was 
introduced in the previous sections, this operation will now 
appear quite naturally in a much different context. 

Let the function h: R -+ IR be a bounded Bore1 measur- 
able function, and let A and B denote the (essential) 
infimum and supremum of h(X,), respectively. Since the 
more general case of unbounded and vector-valued h- 
functions is discussed in Lanford’s work, we shall limit 
ourselves to a simple case of bounded scalar h functions. 
We have the following result. 

Theorem 3 (Lanford, 1973): Let X,, X2, . 1 * be i.i.d. ran- 
dom variables and let h: [w --f R be a bounded Bore1 
measurable function. For ess. inf h( X,) < a -C b -C 
ess. sup h( X,) define the distribution function F,(x) by 

F*(x) = ( JX eXh(x)P{ X, E dx} 
1 

/c(A), (21) 
-co 

where c(X) = Eexhcx) and A is chosen so that 

Slab(x) dF,(x) = 

1 

:h(X,,, 

b < Eh(X,) 
arEh(X,)lb 

-00 
a, a > Eh( X,). 

Then, as n + cc, and for all continuity points x of F,(x), 

P X,Sxja<~,~h(X,)<b 
1 I 

-+ F*(x). (24 
I=’ 

Thus Theorem 3 implies that if a < Eh( X,) < b, then 

X = 0 and FA(x) = F(x) = P{ X, I x}. That is, the condi- 
tioning on the interval (a, b) has an asymptotically negligi- 
ble effect. This statement can be directly verified, since by 
the law of large numbers we have 

Pa<i,ih(X,)<b +l 
i r=l I 

as n + cc. Since furthermore P( B I A) = P{ B 17 A)/P( A) 
+ P(B) as P(A) -+ 1, the theorem follows. 

However, if Eh(X,) 6? (a, b), then this reasoning is not 
applicable. Theorem 3 asserts that the conditional distribu- 
tion of X, still converges and identifies the limiting distri- 
bution Fh( x) as belonging to the exponential family associ- 
ated with F(x). The distribution Fx is the closest to F in 
the Kullback-Leibler sense, of all distributions F*(x) ab- 
solutely continuous with respect to F(x) (F* +c F) and 
agreeing with the “asymptotic evidence” a < (l/n)Zh( X,) 
< b. More precisely, FA maximizes the F-relative entropy, 
or minimizes the Kullback- Leibler number 

dF*(x) 
K(F*, F) = /logyjq-q~~*tx) (23) 

over all distributions F* +c F for which /h(x) dF*(x) E 
[a, bl. 

We will now outline a proof of Theorem 3. The argu- 
ments presented here are extracted from Lanford’s work [3] 
and its extension by Bahadur and Zabell [S], and we refer 
to this work for details. The proof of Theorem 3 rests 
essentially on an extension of the asymptotic theory of tail 
probabilities to the probabilities of arbitrary open convex 
sets. The exponential decay of these probabilities is estab- 
lished in the following lemma. 

Lemma 2: Let Y,, Y,, * * . be i.i.d. bounded random 
variables taking values in [Wk. Let J be a finite union of 
open convex sets of Rk. Then 

1) S(Y, J) = lim n-‘log P{n-‘Zr,,l; E J} exists (pos- 
sibly infinite); 

2) with s(Y; x) = inf,{S(Y, J): x E J, J open convex} 
we have S(Y, J) = sup,..&Y, x). 

The set function supxEJ s(Y; x) is known as the Lanford 
entropy of J. 

Let p denote the measure on Iw k induced by Y,, and 
define the function u: !R k --f IF4 by 

a(y) = -inf K(v; p):IRktv(dt) = y, v K p 
1 

, (24) 

where, as before, K(v; p) = jlog (dv/dp) dv is the Kull- 
back-Leibler number between v and p. Thus -u(y) is the 
minimum Kullback- Leibler number between the measure 
p and any measure v < p that has expectation y. It is well 
known that u(y) 5 0 and u(EY,) = 0. 

The function u(y) is useful in that it allows us to 
compute the Lanford point entropy s(x) as a Kullback- 
Leibler number. Letting C denote the convex closure of the 
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Lemma 3 (Bahadur and Zabell, [ 81): For every x not on 
the boundary of C we have u(x) = s(Y, x). If Y, is one- 
dimensional then u(x) = s(Y; x) for all x. 

An important fact is that for a bounded random variable 
Y,, the infimum in (24) is attained by the measure 

dF,( x) = ex”(x)dF( x)/c( A), which through f( X, ) and 
h( X, ), induces the measure 

pA{dx, dy} = e’${dx, dy}/c(X) (31) 

on Iw *. Choosing X such that h, = /y dpLx(x, y) and letting 
fo = lx d/+,(x> Y), we have according to (26) that 

v(dx) = e”“p(dx)/C(X), (25) 

where c(X) = Eexp (X’Y,) and the vector A is chosen such 
that 

Thus 
i/ 

Rkxeh’xp( dx) /c(A) = y. 
1 

s(K (.io, ho)) = @v(A) - to, A)( .&, ho)’ 

= s@(T); ho). (32) 

However, since for all x s(Y; (x, h,)) I s(h( X,); h,), it 
follows that the (unique) value f. of x maximizing 
s( Y; (x, h,)) is precisely equal to fo. Thus 

u(y) = log c(X) - A’y, (26) 

and it can be shown that u(y) is a strictly concave function 
of y. 

fo=fZoJxdaA(x, Y> =Jf(t)e”‘(‘)dF(t)/c(X) (33) 

We next outline the proof of Theorem 3. Let f: R + Iw 

be a bounded continuous function, and consider the two- 
dimensional bounded random variables Y, = 
(f(T), h(Xi)), i = 1,2, + . . . Let J C R* @ given by the 
open rectangle [w X (a, b), and letting Y, = n -‘Zy= ,yI, 
consider the conditional expectation 

Since f is an arbitrary bounded continuous function, the 
proof of Theorem 3 follows. 

VI. CONCLUSION 

E n-’ i f(x,)l< E J 
i i=l i 

= (a,(J))-‘~4%b, y), 

(27) 

where p,, is the measure induced on R * by Tn. According to 
Lemma 2, lim n -’ log p,J J) = S( Y, J) exists and is given 
by sup,.,s(Y; J). By the concavity of s(Y, x) and the 
boundedness of r,, the supremum above is attained 
at some finite point y, = ( fo, h,) in the closure of J. 
With c > 0 let J’ denote the set (- cc, f. - c) X (a, b) U 
( f. + e, cc) X (a, b), a finite union of open convex sets. 
Again, S( Y; J’) = lim n -’ log p,J J’) = lim n -’ log P{ a < 
n-‘xh(Xi)<b,Ifo-np’ x f( X,)1 > E} exists. However, 
by the strict concavity of s on J, we have S(Y; J’) < 
S(Y; J), and thus for all c > 0, PJ J’)/pL,( J) + 0 as n + 
co. Since f is bounded it follows that 

Suppose that we have observed a large number of simi- 
larly drawn (i.i.d.) random variables X,, X2,. . .,X,. An 
observer suggests that the function h(x) E Rd contains all 
the “useful” information in x. We observe the empirical 
average h, = (l/n)Z~=,h( Xi) and are disconcerted to find 
that h, # Eh( X,). We did not observe what we expected to 
observe. Obviously the conditional distribution of Xl will 
be affected. The results of this paper show that the condi- 
tional distribution f of Xl is given asymptotically by the 
closest distribution f (in the Kullback-Leibler sense) to the 
initial distribution g over all distributions f satisfying the 
observed constraint 

/f(x)h(x) dx = h,. 

We can then say the following. 

(34) 

E n-‘i f(X,)l<EJ -fo. 

i i 
(28) 

i=l 

By symmetry it is clear that E( f(X,)l FR E J) = 
E( f(Xj)IYn E J), for all i, j, and hence we obtain 

E(f(X,)lY, E J) -fo. (29 

To complete the proof, we have to identify the point 
( fo, h,) of S where s attains its maximum. Since s is a 
strictly concave function attaining the global maximum 
s = 0 at (Ef(X,), Eh(X,)), we have 

1) The conditional distribution is the maximum entropy 
distribution (relative to the initial distribution). 

2) The conditional distribution f is the most difficult to 
distinguish from the initial distribution over all f satisfying 
(34). This interpretation follows from the well-known result 
that the Kullback- Leibler number K( f; g) is the exponent 
in the probability of error in the two-hypothesis test f, 
versus g when the probability of error under g is fixed. 
Thus low values of K result in slow convergence of the 
probability of error. 

3) The explicit form of the limiting conditional density 
f(x, Ih, = a) is given explicitly, under mild conditions, by 

f(xlh, = (Y) = ceX’h(X)g(x). 

Thus f is the normalized product of a maximum entropy 
density eXIhcx, and the initial density g. 

We may ask why maximum entropy distributions arise b, b I Eh(X,), 

h, = Eh(X,), a<Eh(X,)<b, (30) naturally in physics. The answer is that physicists have 
a, a L Eh( X,). identified good observation functions h(x). Moreover inde- 

pendence of the observations holds asymptotically; and the 
In order to identify fo, consider the probability distribution sample size n is large. In effect the physicist has identified 
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(l/@i”=,h(&) as a sufficient statistic. In short h, sum- 
marizes all that is physical about the sample; and, given h,, 
the sample is maximally random and conveys no further 
physical information. 
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Error Performance of Differentially Coherent 
Detection of Binary DPSK Data Transmission 

on the Hard-Limiting Satellite Channel 
JHONG S. LEE, MEMBER, IEEE, ROBERT H. FRENCH, MEMBER, IEEE, AND YOON K. HONG, MEMBER, IEEE 

AInfract-The error performance of differentially coherent detection of 
a binary differential phase-shift keying (DPSK) system operating over a 
bard-limiting satellite channel is derived. The main objective is to show the 
extent of error rate degradation of a DPSK system when a power imbal- 
ance exists between the two symbol pulses that are used in a bit decision 
interval. Consideration is also given to the DPSK error rate performance 
for the special case of uncorreluted upfink and correlaied downlink noises at 
the sampling instants in adjacent time slots. Error probabilities are given as 
functions of uplink signal-to-noise ratio (SNR) and downlink SNR with 
different levels of SNR imbalance and different downlink SNR and uplink 
SNR as parameters, respectively. Our numerical results show that 1) as 
long as the symbols are equiprobabie, the error probability is not dependent 
upon the downlink noise correlation, regardless of whether there is a power 
imbalance; 2) error performance is definitely affected by the power imbal- 
ante for all cases of symbol distributions; and 3) the error probability does 
depend upon downlink noise correlation for ail levels of power imbalance if 
the symbol probabilities are not equal. 
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I. INTRODUCTION 

-1 N SOME applications, a modem employing differen- 
tially encoded phase-shift-keyed (DPSK) signal trans- 

mission with differentially coherent demodulation is an 
appropriate choice when the circuit simplicity and the 
accompanying cost effectiveness are the overriding consid- 
erations in a data communication system. A typical appli- 
cation might be an expendable buoy with a cost constraint 
that requires a modem capability for data transmission and 
command-signal reception. 

In this paper we consider such a DPSK system operating 
over the hard-limiting satellite channel. The main purpose 
of the paper is to show the extent of error-performance 
degradation of the DPSK system under the following two 
assumptions: 1) there exists a power imbalance between 
two symbol pulses that are used in a bit decision interval, 
and 2) the sample values of the downlink additive noise at 
the sampling instants in adjacent time slots are correlated 
whereas the sampled version of the uplink noises are 
independent. The motivation for considering the effects of 
these assumptions on the DPSK error performance is based 
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