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Hk= E{ -log p(XklX,k-')) is equal to E{ -log p(XoIX~k))by stationarity, 
and Hk is nonincreasing by Jensen's inequality. H can also be defined as the 
Cesiiro limit, 

(5) H = lim 1n-'E{-logp(X,,. ..,Xn-,)) = lim 1n-' H~ 
n n t = O  

I t  will be crucial [and argued in the following; see (17)-(IS)] that H~\ H = H m ,  
where 

(6) H" = E{-logp(XoIX-,, X-,, ...)). 

The following lemma will be used when gn is the likelihood ratio of an 

alternative measure relative to the true distribution of {X,). 

LEMMA1. If {g,) is a sequence of positive random variables such that 
E{gn) I 1 for all n, then 

PROOF.If E > 0, then P{n-'log gn2 E) = P{gn 2 exp(ne)) 2 exp( -ne) by 
Markov's inequality. But Cnexp(-n ~ )< m and hence lim sup, n- 'log gnI 

E a.s. by the Borel-Cantelli lemma. The lemma follows since E > 0 was arbitrary. 

THEOREM1 (Breiman's AEP). IfH is the entropy rate of a finite-valued 

stationary ergodicprocess {X,), then 

PROOF.We argue that the likelihood growth rate -n- 'log p(Xo,...,Xn- ,) 

is asymptotically sandwiched between the upper bound Hkand the lower bound 
H", for all k 2 0. The AEP will follow since the sandwich closes in the limit as 
k + m. 

The k t h  order Markov approximation of the probability p(X,,. ..,Xn-,) is 
defined for large n ( n  2 k )  as 

In view of the expansions 

(10) 
n- 1 

= -n-'logp(X,,. ..,XkP1)- n-' 1 log p(XtIXt-1,. ..,Xt-k) 
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and 

- n-'log p(Xo,  . . . ,Xn-llX-l,. ..) 

t = O  

the ergodic theorem asserts that 

and 

- n-'logp(Xo, ...,Xn-llX-l,. ..)
(13) 

The expectation of the likelihood ratio of an alternative measure relative to 
the true distribution is equal to the mass of the absolutely continuous part of the 
alternative measure, and this is no larger than its total mass. Thus 

and 

By Markov's inequality and the Borel-Cantelli lemma (cf. proof of Lemma I), 

pk(XO,..., Xn-1) 
lim sup n- 'log  i 0 a s ./

n  P ( X O ~ * * * ~Xn-1) 

and 

(17)  lim sup n-'log 
P(XO>...> Xn-1) 

n P ( X O ~ * * * ~Xn-1IX-1, X-2>.. .)  

Writing the log-likelihood ratios in (16) and (17) as differences of log-likelihoods 
and applying the limit theorems (10) and (13) we obtain the chain of asymptotic 
inequalities 

2 limsup - n-'logp(Xo, ...,Xn-,) 
n 

(18) 
2 liminf - n-'log p (Xo,  . . . ,Xn-,) 

n 

2 E { - ~ O ~ ~ ( X ~ ~ X - ~ ,= H" a s .X-, ,...))  

I t  remains to show that no gap exists between H k  and H" in the limit as 
k + co. Indeed, LBvy's martingale convergence theorem for conditional probabil- 
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ities asserts that 

(19) p ( x o l ~ ~ k )-+ p(xo l~ ; l )  a.s. for all xo E 3. 

Since 3 is finite and p log p is bounded and continuous in p as 0 Ip I 1,the 
bounded convergence theorem implies that 

Thus HkL H = H m  as k -+ oo,and the AEP follows. 

3. The generalized AEP for processes with densities. Let 3designate a 
standard Borel space, (a ,  9 )  the sequence space 3; with its Borel a-field, T 
the left shift on (a ,  F),and X,(o) = Xo(Tto)the usual coordinate projections. 
If P and Q are probability distributions on ( a ,  9 )  and 9 is a sub-a-field of F ,  
then (dQ/dP)I, will denote the likelihood ratio of the restriction & I ,  with 
respect to the restriction PI,. This 9-measurable random variable on ( a ,  9 ,  P )  
is obtained by evaluating the Radon-Nikodyrn derivative of the absolutely 
continuous part of & I ,  relative to PI,, a t  the actual outcome a. 

Let ( a ,  F )  be equipped with two probability measures, a reference measure 
M that is vth order Markov with stationary transition kernel M ( ~ ~ C , I X ~ - ~ )and a 
stationary measure P that is the true distribution of the process {X,). The finite 
dimensional marginals of M are assumed to dominate the corresponding margi-
n a l ~of P ,  and p(xo,...,x,-,) will designate the density of the restriction 
PIa(xt-1, relative to the restriction 1). Thus 

Let P be extended to a stationary distribution on the two-sided sequence 
space 3-',. We designate by R the probability measure on 3-wmsuch that XI& 
is distributed as under P and the transition kernel R(&,)x?-2) is a copy 
M(&,lx::,') of the transition kernel of M, for all t 2 0. In particular Rla(xO,)is 
obtained by extension to a(X!,) of the set function 

The finite dimensional marginals of P are dominated by the corresponding 
marginals of R. For finite k 2 v let p(xolx-,, ...,x-,) 'denote the density of P 
relative to R after restriction to o(X"). I t  is well known [cf. Neveu (1972), 
Proposition 111-2-71that {P(X,IXI~),a(X!,)), ,,,,is an R-martingale, con-
verging a s .  (R)  to the density of the absolutely continuous part of Pl,(xo,, 
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relative to Rl,(x2,): 

a .s . (R)as  k + co. 

Let p(X,IX::;) denote the random variable obtained by shifting p(X0IXIi) 
over t periods. . 

The relatiue entropy rate is defined as IM(P)= lirn, .T. I$(P), where 

If IM(P)< co, then P i s  dominated by R on o(X!,), with densityp(Xo~X~',)= 

l i m k p ( ~ o ~ ~ ~ ~ ) % . s .(P), and {logp(Xo~XI;),u(XOk)), ,< ,is a uniformly 
integrable P-submadingale. Consequently if the limit of expectations IM(P)= 

lirn, .T I i ( P )  is.finite, then it coincides with the expectation of the limit, i.e., 

(25) IM(P)= E { ~ O ~ ~ ( X ~ ~ X I ' , ) )if IM(P) < co. 

A proof of these facts is given in full in Moy (1961) and as Exercise IV-5-5 in 
Neveu (1970). -

The AEP will-follow from a lemma that may be of independent interest. 

LEMMA2 (Sandwich lemma). Let {&), (2,) and {En) be sequences of 
positive random uariables. 

(a) If sup, E{zn/Zn) < co or more generally if E{zn/Zn) has subexponential 
growth (i.e., limsupnn-'log E{gn/Zn) I 0), then 

(26) lim inf n-'log gnI lim inf n-'log Zn a.s. 
n n 

(b) If sup, E{Zn/%) < co or more generally if E{Zn/Zn) has subexponential 
growth (i.e., limsupnn-'log E{Zn/Zn) I 0), then 

PROOF.Let = E{Z,/%) and suppose e > 0. By Markov's inequality, 

Since ~ ,<ex~( -ne )< co for arbitrary e > 0, the Borel-Cantelli lemma gives 

lirn supn-'log(Zn/Zn) I 0 a.s. 
n 

One obtains the chain of asymptotic inequalities 

limsupn-'log 2, = limsup [n-'log(Zn/Zn) + n-'log Zn] 
n n 

< lirn supn- 'log(Zn/Zn) + lirn supn- 'log Z,-
n n 

< lirn supn- 'log 2,.-
n 

This proves (b) and the proof of (a) is analogous. 
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We obtain the AEP by applying the sandwich lemma to likelihood ratios, 
which have expectations bounded by 1. 

THEOREM2 (Generalized AEP for stationary ergodic P). Suppose M is vth 
order Markou with stationary transition kernel M(&,Ix;-'), and the finite 
dimensional murginals of M dominate the corresponding murginals of a sta- 
tionary measure P. IfP is ergodic, then 

PROOF. For finite k 2 v let Pkdesignate the kth order Markov approxima- 
tion of P, that is the stationary kth order Markov distribution on 3TF having 
the same (k + 1)st order marginals as P. If v I k I n < ca, then P is dominated 
by M on o(X,"-') with likelihood ratio 

By the chain rule for densities, 

(30)  
pk(X0,a * .  ,Xn-1) 

a.s. (P ) .  
d p  a(XS-l) -mO ( X ~ - ~ )  ~ ( x o , . . . ,Xn-1) 

This likelihood ratio has expectation no larger than 1.Using part (a) of Lemma 2 
and the ergodic theorem we obtain the asymptotic lower bound 

liminf n-'log p(Xo, .. . ,Xn-,) 2 limn-'log p k ( x 0 ,  . . . ,Xn-,) 

(31) 
n n 

= I ~ ( P )  a.s. (P). 

Now suppose I,(P) < ca, so that p(X0IX1k) is a bona fide density and 
I,(P) = E{logp(X0IX:k)). Let P" denote the distribution on 3T-m00 such that 
X"' is distributed as under P,and the conditional distribution Pm(&,(X4-,1) is 
equal to P(&,lX,t-') for all t 2 v. If n 2 v, then by the chain rule for condi- 
tional densities 

(32)  
-- P(XO,. . . ,Xn-l)/'~(Xo,..*, Xv-l) n n - 1   a.s. (P) .  

t=,~(xtlx:-:) 
This likelihood ratio also has expectation no larger than 1. Using part (b) of 
Lemma 2 and the ergodic theorem we obtain the asymptotic upper bound 

limsupn-'logp(Xo,. . . ,Xn-,) I E { ~ O ~ P ( X ~ I X - ~ ,  ))X-2, 

(33)  n 

= I,(P) a.s. (P) .  
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But I i ( P )  /r I,(P), so the AEP follows by chaining the asymptotic inequalities 
(31) and (33) if IM(P)< cc and from (31) alone otherwise. 

Note that I i ( P )  = IM(Pk)is the relative entropy rate, relative to M, of the 
k t h  order Markov approximation Pkof P. The difference IM(P) - I b ( P )  can be 
interpreted as the mutual information I(Xo; X I ~ , - ' I X I ~ )= I(Xo; XI',IXI~), 
and also as the information divergence rate I,k(P) of P relative to Pk.The AEP 
(28) with M = pkgives 

n 

pk(Xo, ..,X,-1)
(34) lim n- 'log = I,,(P) = I(x,; XI ' , IXI~) a.s. ( P ) .

p(Xo9.. ., xa-1) 

It is perhaps worthwhile to point out the relation between entropy rate and 
relative entropy rate. If p is a (necessarily o-finite) reference measure on a 
standard Bore1 space 9"and {X,) is an %valued stationary ergodic process with 
distribution P admitting conditional and joint densities p(xn)xn-,, . ..,x,)  and 
p(xo, . ..,xn-') relative to p (respectively, relative to the product of n copies of 
p), then the entropy rate H,(P) is defined as lim, 1H,k(P), where H,k(P) = 

E{-log p(XklX,k- l)). Although H,(P) is always nonnegative if p is counting 
measure on a cauntable set 3,no such claim can be made in general, e.g., if p is 
Lebesgue measure on the real line. Nevertheless, 

n - 1 

+ H,(P) a.s. ( P ) .  

If M is the product of copies of a distribution m that dominates p on 9",then 

In particular, if p is counting measure on a finite set 9"with cardinality Il9"ll and 
M is the product of copies of the normalized measure m = p/ll.%Il, then IM(P)= 

logll~ll- HW(P). 

4. The AEP for stationary and asymptotically mean stationary P. 
Two generalizations of the AEP due to Barron (1985) will now be proved using 
the sandwich technique. 

If P is stationary but not ergodic, then the a-field of invariant events 
9= { F  E %: T-IF = F) is nontrivial. The relative entropy rate I,(P) is then 
the expectation of the invariant random variable i, = limk i&, where 

To prove that i$ is nondecreasing i t  suffices to observe for v < k < I I n that 
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and hence, by Lemma 2 and the ergodic theorem, 

n 

< i h  = limn-'log p z ( ~ o , ...,Xn- ,) a s .  ( P ) .-
n 

THEOREM3 (Generalized AEP for stationary P). If P is stationary but the 
other hypotheses of Theorem 2 hold,then 

PROOF. If IM(P) = E{i,) is finite, then (40) follows by substitution 
of the invariant random variables i& = E{log p ( X o ) X ~ i ) ( Y )and iM = 

E{log p(XOIX:L)IS) for the limiting expectations I i ( P )  and I,(P) in (31) and 
(33). If I,(P) = a,then we define QN= {iM< N) for integer N and observe 
that  {aN) is an increasing sequence of invariant events such that the asymp-
totic lower bounds (31) (upgraded by writing i& on the right) and hence (40) 
hold on the complement of UNQN.But (40) holds on QNfor finite N such that 
P(QN) > 0, since i t  holds under the conditional measure P( .  ( a N )= 

P (  n QN)/P(QN)and the constant log P(QN)may be added to or subtracted 
from both sides without making a difference. Thus (40) holds without restriction. 

A probability distribution P in (a,9)is called asymptotically mean sta-
tionary (a.m.s.) if the Cesiuo averages n-lC;:iP(T-tF) converge for all Bore1 
sets F E g.Setting the limit equal to  ?j(F) then defines a stationary measure P ,  
which is called the stationary mean of P. Clearly F and P have the same 
restriction to the invariant o-field X ,  so that E{ ( 3 )  = E{ (9)if E { .) denotes 
expectation with respect to p. See Gray and Kieffer (1980) for further discussion 
of a.m.s. measures, and Section 34.2 in Loeve (1978) for a proof that the following 
strong law of large numbers holds for nonnegative measurable g(o):  

n- 1 

(41) n-'  g(Ttw) -,E{glS) = E{glY) a s .  ( P )  and a s .  ( p )  
t = O  

THEOREM4 (Generalized AEP for asymptotically mean stationary P). Sup-
pose M is finite order Markov with stationary transition kernel and the finite 
dimensional murginals of M dominate the corresponding murginals of an  
asymptotically mean stationary measure P as well as those of its stationary 
mean P. The A E P  will hold for P with the same limiting rate as under IS if 
lim supnn-'log p(Xo,...,Xn- ,) is an  invariant random variable. I n  particular 
if P is ergodic then the AEP for P asserts that 

(42) n 1 o p ( X O , ...,X ) + I ) a .s .  (P) 

PROOF. We consider the ergodic case. Let pk(xo,...,xn-,), p(xo,...,xn- ,) 

and p(x,, .. .,xn-,) denote the densities of p k ,  P and F relative to M after 



908 P. H. ALGOET AND T. M. COVER 

restriction to a(X:-'). Then 

Part (a) of Lemma 2 in conjunction with the ergodic theorem (41) proves that 

= IM(Fk)  a.s. ( P )  

and part (b) in conjunction with the AEP for the stationary mean F yields 

lim supn-'log p (  X,, ...,X,- ,) I limn-'log p(X,, ...,Xn- ,) 

(45) n 
n 

= I,(P) a.s. (P). 

If limsupnn-'log p(Xo,...,Xn-,) is an invariant random variable, then (45) 
holds not only a.s. ( P )but also a.s. (P )  and the AEP (42) follows. 

Notice that lim supnn-'log p(X,, ...,Xn- ,) is invariant if a sequence {k,) 
exists such that 12, + a,k,/n + 0, and n-'logp(X,, ...,Xkn)+ 0 a.s. (P). 
Barron (1985) put forward this condition in his Theorem 3, and reduced it to 
existence of {m,) such that the mutual information I(X,k-'; X ~ l X t + ~ k - ' )is 
finite for all k 2 1. 

Algoet and Cover (1988) provides a gambling interpretation of the AEP and 
further motivation of the sandwich argument. 
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