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THE NUMBER OF LINEARLY INDUCIBLE ORDERINGS OF POINTS 

IN d-SPACE* 

THOMAS M. COVERt 

1. Introduction and summary. Consider a collection of n points 

X I ,  xz, " '  , x, in Euclidean cl-space Ed which are ordered according to 
orthogonal projection onto a reference vector zu E E ~ .If n is a permutation 

of the set of integers { 1,2,  . . . ,n), we shall say that w E E~ induces the or- 
dering n if 

( I )  ZU.2,(1) > ZU.X,(o.) > . . . > 2C.Xr(,). 

Conversely, the ordering T will be said to be linearly inclucible if there exists 

such a zu. 
I n  this paper we demonstrate that there are precisely Q(n, cl) linearly 

inducible orderings of n points in general position in E" where Q(n, cl) 

satisfies the recurrence relation 

Since n 2 2 points can always be ordered in only two ways on a line, and 

since two points can be ordered in only two ways in cl >= 1dimensions, we 

see that 

which, by iteration of (2 ) ,  yields 

where ,Xk is the sum of the ,-tCk = ( n  - 2) !/(n - 2 - k )  ! k !  possible 

products of numbers taken k at  a time without repetition from the set 

(2, 3, . . .  ,n - 1 ) .  

Thus we have found Q(n, cl), the number of ways that an art judge can 
rank n paintings, each having cl numerical attributes, by forming weighted 

averages of the attributes. Our interest in this problem stems from work 

[I], [2], [3] on classific,ztion of vector-valued patterns by means of linear 

discriminants. 

Notice that the number of linearly inducible orderings is independent of 

configuration (up to general position). Two examples, however, will show 
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that the "texture" of these orderings is not. In  the first example, consider 

four points in the plane forming the vertices of a quadrangle as shown in 

Fig. 1A. (The w shown here induces the ordering (2, 3, 1, 4) .) Any one of 

these points may be ranked first (or last) by an appropriate orientation of 

the weighting vector w. In the second example, let one point lie in the center 

of a triangle formed by three others, as shown in Fig. IB. In  this case, no 

linear weighting can rank the center point first or last. But in both cases, 
precisely Q(4, 2) = 12 of the 4! possible orderings of four points are 

linearly inducible. So the number of orderings is configuration-free, but 

the set of orderings is not, even under relabelling of the points. 

We shall establish ( 2 )  and discuss some of the properties of Q(n, cl) 

in the next TI-o sections. In  the last section, general orderings induced 

by indexed families of nonlinear surfaces will be counted. 

2. Theorem and proof. 

DEFINITIOS.'A set of points is in general position in Ed if there exists no 

k-flat, k < cl, containing k + 2 points, that is, there are no three points in 

a line, four points in a plane, etc. 

THEOREM.There are Q(n, cl) linearly inclucible orclerings of n points in 

general position, in  

Proof. For a given set of n points {xl ,xz , . . , 2,) there is defined the 

open set W(T) ( a  polyhedral convex cone) of all vectors to in E~ inducing 

the permutation n, where 

The theorem states that there are precisely Q(n, d )  nonempty sets of this 

form. 

Equivalently, each difference vector xi - xj defines a normal hyperplane 

(6) (x; - x j ) l  = (20: tu.(x; - xi) = O ) ,  

and the collection of hyperplanes 

(7)  X,= ( (x i  - 5 i < j 5 n)  

partitions E~ into Q(n, cl) nonempty cones, the nonempty W(T)'s. Each 

such cone is the equivalence class of vectors w C Ed inducing a given 

ordering. Thus the number of nonempty cones is the number of linearly 

inducible orderings. 

Consider a new vector x,+l such that xl ,xz , . . . ,x, ,x,+l are in general 

position in E ~ .Let Q(n, cl) denote the number of regions into which E~ is 

Compare this definition of general position with the definition which arises most 

frequently in geometrical considerations: A set of points is in general position in 

Ed if there exists no k-flat through the origin, k < d ,  containing k + I points. 
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F I G .  1. T W O  conj igurat ions ,  each having 12 l inearly  i nduc ib l e  orderings 

divided by X, .Let n 2 2. Assume that ~ ( n ' ,  cl') has been shown to be inde- 

pendent of configuration for nt = 1, 2, . . . , n and d' = 1, 2, . . . , cl. We 

shall find a relation for Q(n + 1, ( 1 )  and estnblish incidentally that this 

number is independent of configuration also. 

The proof will follow when we have established the following three 

statements. 

1. Each of the hyperplanes (xl - x,+l)', (x2 - x,+l) ', . . . , (x, - x,+I)' 

intersects precisely Q(n, cl - 1 )  regions created by X, . 
2. Xo t~vo  of these hyperplanes intersect one another in the interior of a 

region created by X, . (The intersection of two such hyperplanes is con- 

tained in the set of boundaries of the regions into which l C d  is partitioned 

by X, .) 
3. Hence nQ(n, cl - 1) additional regions are formed, yielding Q(n, (1)

+ nQ(n, cl - 1) in all. 
Statenzent 1. Each plane (x, - z,)' in X, intersects (xl - an+l)' in a 

(d - 2)-space (x, - x,)' (51- xn+l)'. This (d - 2)-dimensional subspace 

of the (cl - 1)-space (xl - x,+l)" has a nornlal in (XI - x,+l)' given by 

(2, - 2,), where 2 is defined to be the orthogonal projection of x into 

(xl - x,+l)'. Thus X, and k,induce the same partition of (xl - x,+l)'. 

;\/loreover, 21 , 22 , . . . , 2, lie in general position in the (rl - 1 )-space 

(21 - x,+~)'. Thus k,partitions (xl - x,+l)' into Q(n, rl - 1 )  cells. 

But we have shown that X, and k, induce the same partition of 

(xl - x,+~)', and hence X, partitions (xl - x,+l)' into Q(n,  d - 1 )  
((1 - 1)-dimensional cells. Since each cell into which (xl - x,+1)' has 

been partitioned serves as a boundary that divides into two cells one of 

the cells generated by X, in d-space, we find that Q(n, d - 1 )  new regions 

have been added to the Q(n, cl) old regions. 

Statenzent 2. TVe shall now show that each new (x, - x,+l)' creates 

precisely Q(n, (1 - 1)  new regions when added to X, and the previously 

added (x, - ~ , + ~ ) " s .We are interested in the number of cells into which 
(ai - 2,+1)' is partitioned by the union of X, and (xl - x,+l)', (x2 - x,+l)', 
. . . , ( . ~ l- x,+~)'. We note irnmediately from (6)  that if 

zc E ( a L- xn+l)l and to E (zn - xn+l)&,then 



-- 

from which we see 

That is, t o  E (2; - xk)'. Thus (xi - fl (xk - xn+l)' is contained x ~ + ~ ) '  

in (xi - xk)', which in turn is contained in the collection X, . Evidently, 

the new hyperplanes (xi - x,+~)' and (xk - x,+l)' intersect one another 

only in the boundaries of the regions previously formed by X, . Thus no 

regions can be formed by the intersection of (zk - x,+l)' with X, 

U {xl - x,+~)'U . . U {xk- 1 - x,+l) 'which could not already be formed 

by the intersection of (xk - x,+l)' with X, alone. And, as was argued in 

Statement 2 for k = 1, precisely Q(n, cl - 1)  new regions are formed by 

intersecting (xk - xn+l)'with X, (and hence with X, U$: (xi - xn+l)') . 
Statement 3. Each of the n additional planes (XI - xn+l)', ( 2 2  - x,+l)', 

, (xn - z,+I)' creates Q(n, (1 - 1)  new regions. Hence, 

Finally, (4) follows from the boundary conditions in (3). 

The first few values of Q(n, d )  are summarized in Table 1. 

3. Properties of Q(n, cl). We note that t,he terms .Ss of (4) are the co- 

efficients in the generating function 

Thus, for d h n - 1, 
m 

(12) Q(n, d )  = 2 .Sk = 2S,(1) = n!. 
k=O 

T h e  nunzbp,r o j  l inearljj  i nduc ib l e  ot,tlerings of n points  i n  Ed 

I I d 
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Hence we see from (12) that, for d 2 n - 1, all possible orderings of n points 
are linearly inducible. This, of course, is easily seen from simpler con-

siderations. 

The reader will observe that the terms ,Sk are similar in definition to 

the Stirling numbers defined by 

However, we have not found a natural expression of Q(n, d)  in terms of 

the Stirling numbers and thus are denied an intriguing analogy between 

the number of linearly inducible orderings of n points in E~ with, for ex- 

ample, the number of permutations of n elements having fewer than k 

cycles. 

Q(n, d)  may be given a probabilistic interpretation. Assume that each 
of then!  permutations of j l , 2 ,  . . . ,n] is equiprobable and that a permuta- 

tion .rr is drawn at random. Then the probability P(n ,  d)  that a is linearly 
inducible is given by 

where the ,PI, are coefficients of the generating function 

Now, P,(t) is the product of characteristic functions and hence is the 

characteristic function for the sum of n - 2 independent binary-valued 

random variables. Therefore, P(n ,  d)  may be interpreted as the probability 

that there are no more than cl - 1 tails in n - 2 independent flips of 

coins having individual probabilities of heads 4, t , . . . , l /n. 

Finally, we remark that the number of linearly inducible orderings is 

related to the number of consistent solutions to a system of linear in- 

equalities. Of the 2" partitions of xl , x2, . . . , x, (d-dimensional and in 

general position) into two subsets, exactly 

can be separated by a hyperplane through the origin [4], [ 5 ] ,[6]. 

4. General orderings. Suppose XI , x2, . . . , x, are ranked, not according 
to their projections on a line, but according to their Euclidean distances 

from an arbitrary point p E E ~ .HOW many different orderings are in-

duced as p ranges over E ~ ?Since 



is equivalent to 

me see that p induces the (distance) ordering rr if and only if the aug- 
mented weighting vector G = ( -p, 1)  E Ed+'linearly induces the ordering 
a on the augmented vectors Zi = ( x i ,  $ 1 1  xi 112), i = 1, 2, . . . ,n ;  that is, 
if and only if 

Thus n points in d-space having the property that no four points lie on a 
circle, no five points lie on a sphere, etc., may be ordered in Q(n, d + 1)  
ways2 with respect to their distances from an arbitrary point p. 

This result is simply obtained as a special case of a more general point 
of view. If we define a general mapping @ from Euclidean d-space Ed 
into E ~ ' ,  we may define an ordering a to be @-linearly inducible if there 
exists w E E ~ 'such that 

Then, if @(xl), @(x2), . , @(xn) are in general position in E ~ ' ,there are 
Q(n, d') such orderings. The distance (or spherical) ordering is obtained 
as a special case for @(x) = (x, $ 1 1  x \I2). Generalizations to such "nonlinear" 
orderings for a different class of problems-that of linearly separating two 
sets of vectors-are discussed in [GI,but the same generalizations carry over 
to the linear-ordering problem. 
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We count orderings according to increasing and decreasing distances from p as 
different orderings. Thus the (d + 1)th coordinate of w may be either positive or nega- 

tive, and w may range over the entire space Ed+'. 


