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ON DETERMINING THE IRRATIONALITY OF  

THE MEAN OF A RANDOM VARIABLE1  

Stan ford University 

A complexity approach is used to decide whether or not the mean of 

a sequence of independent identically distributed random variables lies in 

an  arbitrary specified countable subset of the real line. A procedure is 

described that makes only a finite number of mistakes with probability one. 

This leads to some speculations on inference of the laws of physics and the 

computability of the physical constants. 

1. Introduction and summary. Consider a sequence x,, x,, . . . of independent 

identically distributed coin tosses with unknown parameter p = Pr {xi  = 1). 

Let S = {r,},- denote the rationals. Consider the countable set of hypotheses 

Hi : p = ri, i = 1, 2 ,  . . , together with the null hypothesis Ho : p is irrational. 

We wish to find a test which makes a decision after each new coin flip and makes 

only a finite number of mistakes with probability one for every p E [O,11 - No, 

where No is a set of irrationals of Lebesgue measure zero. 

It  seems unlikely that there exists such a test, for several reasons. First, the 

obvious choice of the sample mean 2, = x; as an estimate of p is( l l n )  C;=, 
always rational and seems to provide little basis for assuming p to be irrational. 

Second, although 12, - pl --t 0, any confidence interval centered at Zn contains 

an infinite number of rational and irrational parameters p which are likely causes 

for x,, xZ,  ., x,. 

We shall return to the coin flipping problem after we have exhibited a proof 

of a somewhat more general result. Let x,, x, . . . be a sequence of independent 

identically distributed random variables of unknown distribution with unknown 

mean p = E x  and finite but unknown second moment. Let S = {p, ,  p2, . . . }  be 

any countable subset of the real line R.  For example, S could be the set of all 

algebraic numbers. The test will decide whether or not p lies in S .  Again, this 

test will make only a finite number of mistakes with probability one for any 

mean p @ No, where No is a subset of R - S of Lebesgue measure zero. Thus, 

it is theoretically possible to determine whether empirically determined physical 

constants belong to certain sets of special numbers. 

An outline of the decision procedure is as follows. At prescribed times 

n ( j ) ,  j = 1, 2 ,  . . . , an interval of width 2dnli, is centered about the sample 

mean F n I i , .  Let S = {p, ,  p,, .) be an arbitrary but fixed enumeration of S, 
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and let i(?,,,,, ?I,(,,) denote the least index i such that pi lies in the interval 

[xnci,- d',!,,, 2n( j l  + d',,,,]. Let k,,,, be an increasing sequence of positive inte- 

gers. Then if 

( I )   i(%,,,,, 6,,,) = i 2 k,,,, , accept Hi (i.e., decide ,u = p,) ; 

otherwise accept H, (i.e., decide p 4 S) . 

For times n, n(j) 5 n < n( j  + I),  continue to make the decision made at time 

n(j). We shall prove that a proper choice of 6,, k,, n(j) yields a test with the 

desired properties. 

A similar result is obtained in Section 3 from a confidence interval specifica- 

tion of p.  The proof is somewhat simpler than that in the next section. 

2. Choice of decision variables. Let p = E{X) and a2 = E(X - p)" co de-

note the unknown mean and variance of x. Define the sample mean 2, = 

(lln) C;x, and sample variance sn2 = (lln) C:(xi - Rn)2. By the law of large 

numbers, 

(2)  x, +p , W.P. 1 and 

Although it is not essential for our arguments we shall also use the law of the 

iterated logarithm (see Chung [I]),  which states that for E > 0 

(4) 2 ,  - p 5 (1 + !)(2a2 log (log n)/n)h all but f.0. w.p. 1, 

i.e., with probability one this inequality is violated for only finitely many positive 

integers n .  

Finally, we define 

( 5 )   i(t, 6) = min, {i: p, E [t - 6, t + 611 

to be the least index i such that p, lies in the interval [t - 6, t + 61. (The calcu- 

lation of i(t, 6) is easily seen to be finite for any effective enumeration of S 

(Minsky, [ l l ] ,  page 160) and any computable (t, 6) E R x R . )  We shall fre- 

quently use the property, following immediately from the definition, that 

(6)  0 5 6 5 6' implies i(t, 6) 2 i(t, 6') . 
If one interprets i(?,, 6) as the "complexity" of the explanation of 2, by S 

with accuracy 6, the test procedure has the following interpretation: Decide 

that unknown mean p is given by the least complex explanation j~,,,,,,,, unless 

this explanation is too complex, in which case reject any explanation in S. This 

is Occam's razor, sharpened to admit the possibility of no explanation in S 

whatsoever. 

To proceed, define the sequence of random variables {z,) and constant {a,} by 

(7) z, = (2s;  log (log n)/n)h 

(8)  a, = (2a2 log (log n)/n)i 
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Equations (3) and (4) imply, for any E > 0, that 

(9)  12, - pi < (1 + E)Z, all but f.0. w.p. 1. 

Now suppose that hypothesis Hi is true (i =# 0), i.e., suppose p = pi. Letting 

6, = (1 + E)z,, it follows from (3 ) ,  (7), (8) that a, < (1 + a)z, = d, all but 

f.0. w.p. 1, thus implying that pi&[2, - a,, 2, + d,] all but f.0. w.p. 1, and 

therefore that 

(lo)  ( 2 ,  6 = i , all but f.0. w.p. 1 

(Of course, if S is allowed to have repeated elements in its enumeration, 

i(?,, 6,) will converge to the least index i such that p = pi.) Consequently, if 

k, -+ co,and p = pi E S, then 

(11)  i(2,, 6,) = i 5 k, all but f.0. w.p. 1. 

Thus i(n,, 6,) converges to the true index i and the test makes only a finite number 

of mistakes w.p. 1 if p E S .  

At this point we have a simple test among the countable hypotheses p = pi E S, 

but do not have a means for rejecting the hypothesis p E S .  This last step is 

less obvious. 

In order to complete the description of the decision procedure, it remains to 

determine how k, tends to infinity, and at what subsequence of times n(j) the 

decision should be changed. These conditions will follow from investigation of 

the null hypothesis Ho: p 4 S.  

Let us first observe that, for E > 0,  

(12)  i(n,, (1 + E)z,) 2 i(p, 2(1 + E)z,) h i(p, 2(1 + &)'a,) 

all but f.0. w.p. 1, 

where the first inequality follows from (5) and (9) and the second inequality 

follows from (6) and z, < (1 + &)a, (all but f.0. w .p. 1). 

We digress to observe that 

(13) R{p E R :  i(p, 6) 5 k} = l{U:=l[p, - d, p, + 61) 5 2kd , 

'where  R denotes Lebesgue measure. 

Let n(j), j = 1, 2, . . . be a subsequence satisfying 

(14) C:=I a,(j ,kn(j)< 
Then, by (13), 

Let Nodenote the null set of R - S implied above for which i(p, 2(1 + ~ ) ~ a , ,j,) g 
k,, ,, infinitely often. 

We can now conclude from (12) and (15) that, for p 6S u No, 



865 ON DETERMINING T H E  IRRATIONALITY OF T H E  M E A N  

Thus, under Ho: p @ S, the decision procedure makes only a finite number of 

mistakes w.p. 1 for all p @ No. Allowing the decisions to remain the same as that 

a t  time n(j) for times n such that n(j) 5 n < n( j  + 1) results in a finite total 

number of mistakes w.p. 1. 

Gathering these conditions together and recalling s,2 = (lln) C;=,(xi - %,),, 

we have 

THEOREM If x,, x,, . . . ,are independent identically distributed random variables 1. 

withjinite second moment, the decision procedure of Equation (I) ,  in which H,(p = pi) 

is accepted if i(j?n,j,,d',,,,) = i 5 k,,,,, and Ho(p @ S) is accepted if i(%,,,,, 6 ,,,,) > 
kn,j, ,  where a > 0, and d,, k,, n(j) satisfy 

(17a) kn--, m ,  n ( j ) /  m ,  

(17'3) d, = (1 + a)(2s,2 log (log n)/n)i , 

will make only a jinite number of mistakes with probability one in determining 

H z : p = p i ,  i =  1 , 2 ,  . . . ;  Ho: p @ S = { p i :  i =  1 , 2 ,  . . . } fo  r any p @ N , ,  where 

No is a null set of R - S. 

COMMENTS.A possible choice of variables satisfying (17) is n(j) = jO'l+E', 

E > 0, and k,,,, = j. Note also that the artifice of introducing a proper subse- 

quence n(j) is necessary, because setting n(j) = j (allowing the decision to be 

changed after every observation) yields CT=,k,,,, dm,,, 2 C7=Jj = m , thus vio- 

lating (17 c). Apparently changing decisions too often may lead to an infinite 

number of errors. Finally, note that Theorem 1 tests an uncountable set of 

distributions against its uncountable complement. 

If x,, x,, . . . are Bernoulli random variables with Pr {xi = 1) = p = 1 -
Pr {xi = 0}, then s,2 < 4,for all n. Thus the conditions simplify to 

( l a b )  dn  = (1 + &)(log (log n)/2n)i , 

and the complexity of the proof of the theorem can be somewhat reduced, 

yielding the following result. 

COROLLARY1. I f  x,, x,, . are Bernoulli rv's with unknown parameter p, then 

the decision variables of (1 8) yield a decision procedure making only a jinite number 

of mistakes with probability one in determining p E S vs. p @ S for p @ No. 

When Corollary 1 was mentioned, D.  Blackwell provided a beautiful applica- 

tion of a theorem of Doob [3] that also yields the result of this corollary. The 

idea is to put two finite weighting measures on the rationals and irrationals and 

compute the a posteriori probabilities of the hypotheses by Bayes' rule. By the 

Martingale theorem (Doob [3]), the a posteriori probability will converge to 1 
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on the correct hypothesis w.p. 1 ,  and the result follows. Elegant as this approach 

is, it introduces weighting measures and the difficult attendant computations of 

the a posteriori probabilities. This Bayes approach also tends to obscure the 

"complexity" interpretation which seems to be the underlying idea. Apparently 

this Bayesian approach cannot be extended to prove Theorem 1 because of the 

difficulty of placing an interesting measure on the uncountable set of all distri- 

butions with a given mean with finite variance. See also the generalization that 

is achieved in Theorem 2 in Section 3 ,  where a confidence interval point of view 

is taken. 

Turning to a somewhat different method of revelation of a real number p,  

suppose that a real number p E [ O ,  11 is revealed digit by digit. We can modify 

Theorem 1 (or use Theorem 2 of the next section directly) to obtain 

COROLLARY2. I f  a real number p = . p lp ,p ,  . . . E [ O ,  1 1  is revealed digit by 

digit, wejind, after dejining in = i( .pip, . p,500, . . ., d,), that the procedure 

Decide p = si , if i, = i 5 k ,  ; 

Decide p @ S , if i, > k ,  , 
where 

yields a sequence of decisions making only ajinite number of mistakes with probability 

one in determining p E S vs. p @ S for p & No, No a null set of R - S.  

COMMENT.k ,  = g" suffices. 

As an example of this calculation, we have tested the irrationality of n110, 

e /10,  and 3,where S is the set of rationals in the unit interval enumerated in 

the order ( 0 ,  1 ,  4,Q, $, 4,2 ,  2, +, . . .). Thus, for example, the index of & is 9.  

Throughout we shall use k ,  = 9" as the decision threshold. Let in denote the 

index of the first rational in the enumeration Isl, s,, . . . }  that agrees with p in 

the first n digits. 

For the number el10 = ,271 82818284 . . . we have 

n .p l  . * a Pn Sin in  k ,  i, 6, Decision 

1 .2 -I
4 

6 9 .6 Rational 

5 ,27182 1091401 79,911 59,049 .799 Irrational 

9 ,271828182 12,973147,725 1.139 x 1010 3.8 x lo8 1.139 Irrational 

For the number n/10 = ,31415926 . . . we have 

n .p l  A Sin in k ,  i, 6, Decision*1 .3 4 9 a4 Rational 

5 ,31415 7 11226 27,273 59,045 .252 Rational 

9 .314159265 51,4641163,815 1.3 x 10" 3.8 x l o 8  13.417 Irrational 
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For the number 3= .I42857142 . . . we have 

n .p,  . . .  Pn n In ka i, 6, Decision$1 

1 .1 -61 13 9 1.3 Irrational 
5 .I4285 -71 18 59,049 .00018 Rational 

9 .I42857142 -71 18 3.8 x lo8 1.8 x Rational 

A reasonable choice of decision variables would probably decide el10 to be 

irrational after the 7th digit, ~ / 1 0  to be irrational after the 8th digit and, 3 to 

be rational after the 2nd digit. Except for the number +,we have not analyzed 

the behavior beyond the 9th digit. A more complete table can be obtained from 

the author. 

3. Speculations and another theorem. There have been some recent interesting 

suggestions of formulas for various dimensionless physical constants. For ex- 

ample, Lenz [lo],  noted in 1951 that the ratio m,/m, of the mass of the proton 

to the mass of the electron is very closely approximated by 67c5. No theoretical 

justification was provided in his one line note. More recently, Good [9] and 

Wyler [14, 151 have seriously reiterated this conjecture and given some admit- 

tedly ad hoc theoretical justification involving the calculation of volumes of 

unit spheres in phase spaces of the appropriate dimension. The observed value of 

the ratio of the mass of the proton to the mass of the electron is 1836.109 f .011. 

The conjectured value 67c5 equals 1836.11 8 . . . This agrees within the experi- 

mental accuracy of one part in lo5. 

More bizarre perhaps is a conjecture by Wyler concerning the fine structure 

constant cu = 27ce2/hc. This constant is dimensionless. I t  would be exceedingly 

interesting if cu turned out to be a computable number, for this would yield a 

finite calculation of the charge of the electron in terms of the apparently inde- 

pendent. physical constants h (Planck's constant) and c (the speed of light). So 

far, we have only empirical derivations of the fundamental physical constants. 

Wyler [15] conjectured in January 1971 that a-l = (9 /8~*)(n~/2~5!)+ .This for- 

mula agrees with experiment up to the present experimental accuracy of one 

part in lo6. As in the case of m,/m,, the calculation involves ratios of volumes 

of spheres. 

These hypotheses are interesting, especially since they support the informal 

view of Einstein [5] and others that there is a simple relation among all of the 

dimensionless physical constants, i.e., none are arbitrarily specifiable, any more 

than the circumference of a circle can be independently specified given the 

radius. 

In this section we wish to address the question of the degree of belief that 

should be attached to these hypotheses. (The interesting reexamination of Bode's 

law by Good [8] and Efron [4] illustrates the difficulties of arriving at a uni- 

versally agreed upon degree of belief in a given hypothesis.) 

A deviation from existing orthodoxy on statistical tests is that we nowhere 
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consider a stopping rule,3 largely because we envision the physicist taking action 

on the basis of his current knowledge while his research for the laws of nature 

continues. It is futile to stop this process and declare a given law fixed forever. 

In the context of the problem below it will be shown that only a finite number 

of actions in the infinite sequence of actions will be inconsistent with the true 

state of nature. This will be true despite the lack of certainty at any finite time 

of the true state of nature. 

This paper suggests an orderly approach to the formulation of conjectures, 

whereby a conjecture is to be acted upon as if true only if it is sufficiently simple 

with respect to the observational error in the phenomenon it describes. Other-

wise, no conjecture is accepted. The principle that,"the simplest explanation 

is best" is Occam's razor [7,  121. The condition that the explanation not be too 

complex is a refinement. 

Suppose one is concerned with a certain dimensionless physical constant a. 

Suppose also at time n that one is given an experimental guess a, of the correct 

value of a together with a confidence interval a,, and a confidence 1 - p, where 

Pr {la, - a1 > a,} 5 p,. Of course, the better the experiment, the smaller may 

be 6, for a given confidence 1 -p,. 

We are concerned with the hypothesis that a belongs to a certain set S of 

special real numbers. In particular, let S be the set of all computable real 

numbers, i.e., all real numbers for which there exists a finite length computer 

program that will generate approximations of arbitrary prescribed accuracy.' 

Clearly S is countable, because the programs of finite length can be enumerated. 

Let s,, s,, . . . be an arbitrary but fixed enumeration of S. Let i, denote the least 

index i such that a, - 6, 2 si 5 a, + 6,. We shall call i, the "complexity" of 

the explanation in S of the estimate a, with accuracy 6, and confidence 1 - p,. 

Let k j  be any increasing sequence of integers tending to infinity. Choose 

n(j), j = 1, 2, . . . , to be an increasing sequence of integers such that 

and 

Assuming that experiments of arbitrary accuracy can be performed, given 

sufficient time, is equivalent to assuming the existence of a subsequence m(n) 

such that (p ,,,,, 6,,,,) -+ (0, 0). Under these conditions, k j  and n(j) can be 

chosen to satisfy the constraints above. 

Some nice results on the existence of stopping rules for testing p = po vs. p # ?to with power 

1 have been obtained by Darling and Robbins [2]. 

The idea that special attention should be paid to the computable real numbersarises naturally, 

since only the computable real numbers can be finitely described. Good [6 ,  footnote page 551, 

for example, points out in the Bayesian context that it would be "quite rational to concentrate 

a finite amount of probability a t  every 'computable' value of x . .  .." 
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We shall use the following decision procedure: At times n ( j ) ,  j = 1 ,  2 ,  . . 
decide a = s in i j1 ,if in(,, 5 k,; otherwise decide a @ S .  At time n ,  n ( j )  < n < 
n ( j  + I ) ,  continue to make the decision made at time n ( j ) .  

By using a Borel-Cantelli argument, we modify Theorem 1 to conclude that 

this test will make only a finite number of mistakes with probability one, for 

any real number a ,  subject only to the condition that a does not belong to a 

certain null set of the complement of S .  Thus if a. is a special number, we shall 

eventually determine its true value after a finite number of mistakes; and if n is 

not special (and not in the null set), we shall also make this decision forever 

after a finite number of decision errors. 

Collecting these ideas we have the following theorem based on confidence 

intervals. 

THEOREM2.  Let n = 1 ,  2 ,  . . . be a sequence of random variables (the joint 

distribution of which depends on the real number a ) ,  and let an ,  p,, n = 1 ,  2 ,  . . , be 

sequences of real numbers such that Pr (la,  - a1 > 6,) 5 p,, V, in the real line R .  

Then if p, +0 ,  6, --t 0 ,  the above decision procedure will make onLv a finite number 

of errors with probability one in determining the correct h~pothesis among H,  : a = s,; 

i = 1 , 2 , . . . ;  H o : a @ S = { s , : i = 1 , 2 , . . . } ,  f o r a @ N , ~ R - S , w h e r e N , h a s  

Lebesgue measure zero. 

PROOF. Choose n ( j )  to satisfy (20a, b). Suppose a c S.  Let i be the least 

index such that a = si. By the Borel-Cantelli lemma, C;",,p,,,, < w implies 

i,,,, 5 i all but finitely often with probability one. But 6 ,  +0 implies inti ,>= i 

all but f.0. w.p. 1. Thus in,,, = i 5 k ,  all but f.0. w.p. 1 ,  and the theorem is 

proved for a c S .  

Now suppose a @ S .  Let i ( t ,  6 )  denote the least index i such that t - 6 5 si 5 
t + 6. We know, for all n c R ,  that Pr { ( a ,- a (  > 6,) 5 p,, and thus that 

la,, j ,  - a1 5 6,,,, all but f.0. w.p. 1 .  Hence, by the triangle inequality, [a,,,, -

6,,,,, a n I j ,  + 6,,,,] c [ a  - 26,,,,,a + 26,,,,1 all but f.0. w.p. 1 ;  which in turn 

implies i(a,,,, 6,,,,) )= i (a ,  26,,,,) all but f.0. w.p. 1 .  

Note that ,!{a : i (n ,  26,,j,) 5 k j ]  5 4ki6, , j , .  Therefore C ki6,, j ,  5 w implies 

p{n : i (a ,  26n, j1)  5 k,, i.0.) = 0, or, equivalently, i (a ,  26,,i,) > k j ,  all but f.0. 

w.p. 1,  a.e. a .  Finally, if C>,k ,  S n l j 1< m ,  then 

all but f.0. w.p. 1 ,  a.e. a .  Hence the set of real numbers IV, for which the de- 

cision " a  E S" is made infinitely often has Lebesgue measure zero. Thus for 

a @ S u IV,, the correct decision " a  @ S" is made all but finitely often, and the 

theorem is proved. 

Two comments are necessary: 

1 .  While it is true that this sequence of decisions will eventually be correct 

for all time, we will never have the luxury of knowing at what time we have 

made our last mistake. This is a characteristic of the problem and is not a 
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fault of the test. One has theories, and refinements of theories, and no guarantee 

that the process will ever stop, given the countable infinity of possible finite 

explanations and the uncountable infinity of possible infinite explanations. How-

ever, if there is a finite theory, and the accuracy of experiments grows without 

bound, then the proposed test will eventually decide on this theory. This con- 

vergence is by no means guaranteed by the present means of arriving at con- 

clusions. I suspect that decisions are changed too often (i.e., n ( j )  grows too 

slowly) and that an infinite number of incorrect decisions will result. 

In order to make practical use of these considerations it is necessary to be 

able to calculate the complexity in in a finite amount of time. Actually, for S 

equal to the set of all computable real numbers, i, is not a computable function. 

Thus the previous results are true for S ,  given in, but we cannot guarantee the 

finite calculation of in. Because of this we should be content with a somewhat 

smaller set S' of special numbers: for example, the set of all real numbers gen- 

erated from the integers by primitive recursive operations [13]. Since the set 

of primitive recursive functions contains almost every known function, the set 

S' contains almost any number we can think of. In particular, S' contains all 

the rationals and algebraic numbers as well as 6n5 and (9/8n4)(n5/245!)*. It can 

be shown that there exists an algorithm for S' which calculates i, in finite time 

for any real a and any n. 

Returning to Wyler's conjecture, we argue that ( 9 / 8 ~ ~ ) ( ~ ~ / 2 ~ 5 ! ) 4  is an accept- 

able conjecture for a-' if the index i, of this formula in a list of all formulae 

physicists are likely to conjecture for this phenomenon is much less than lo6. 

Implicit in this is that the confidence interval 8, is such that p, z 0 and that the 

experimental accuracy is one part in lo6. 

The rule of thumb that arises is that conjecture s,, is accepted if i,8, << 1. 

(Note that 2i,6, is an upper bound on the Lebesgue measure of the set of real 

numbers that have 8,-approximations with complexity less than or equal to in.) 

By embedding this one-shot decision in a sequence of decisions, it is clear that 

the desired objective of a finite number of mistakes is achievable. 

Thus Wyler's conjecture should be rejected unless the complexity in of the 

formula is much less than lo0. Although there is no universally agreed upon 

list of formulas, I think it is fair to say that a list chosen independently of the 

knowledge of the experimental value of the fine structure constant would not 

have an index in for Wyler's formula less than lo6. 

The theoretical physicist's burden in this problem is to show that (9/8n4)/ 

( ~ ~ / 2 ~ 5 ! ) 4is not as complex as it seems, by showing how it may be simply de- 

rived with the aid of "known" physical laws. In other words, we allow some 

juggling of .the order of the list as a concession to common sense. A modifica- 

tion of Theorem 2 can be made to allow this. The burden on the experimentalist 

is to reduce the experimental error 6,. This will allow formulas of higher 

complexities to be considered as explanations and will also eliminate incorrectly 

held theories of lower complexity. 



O N  DETERMINING THE IRRATIONALITY OF THE MEAN 871 

Apparently Wyler's formula is too complex to be accepted on the basis of the 

current evidence. On the other hand, the apparent discreteness of mass and 

energy in the universe (and the consequent countability of mass points and energy 

levels) suggests that the laws of physics and all dimensionless physical constants, 

and indeed all biases of coins, etc., can be accommodated by a finite theory and 

are therefore computable real numbers and functions. If we ignore the physical 

problems of obtaining a sequence of observations of unbounded accuracy, this 

proposition can be tested. 
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