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Abstract

For a market withm assets consider the minimum over all possible sequences of asset

prices through time n of the ratio of the �nal wealth of a non-anticipating investment

strategy to the wealth obtained by the best constant rebalanced portfolio computed in

hindsight for that price sequence. We show that the maximum value of this ratio over all

non-anticipating investment strategies is Vn =
�P

2�nH(n1=n;::: ;nm=n)(n!=(n1! � � � nm!))
��1

,

where H(�) is the Shannon entropy, and we specify a strategy achieving it. The optimal

ratio Vn is shown to decrease only polynomially in n, indicating that the rate of return

of the optimal strategy converges uniformly to that of the best constant rebalanced

portfolio determined with full hindsight. We also relate this result to the pricing of a

new derivative security which might be called the hindsight allocation option.
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1 Introduction

Hindsight is not available when it is most useful. This is true in investing where hindsight

into market performance makes obvious how one should have invested all along. In this

paper we investigate the extent to which a non-anticipating investment strategy can achieve

the performance of the best strategy determined in hindsight.

Obviously, with hindsight, the best investment strategy is to shift one's wealth daily into the

asset with the largest percentage increase in price. Unfortunately, it is hopeless to match the

performance of this strategy in any meaningful way, and therefore we must restrict the class

of investment strategies over which the hindsight optimization is performed. Here we focus

on the class of investment strategies called the constant rebalanced portfolios. A constant

rebalanced portfolio rebalances the allocation of wealth among the available assets to the

same proportions each day. Using all wealth to buy and hold a single asset is a special case.

Therefore the best constant rebalanced portfolio, at the very least, outperforms the best

asset.

In practice, one would expect the wealth achieved by the best constant rebalanced portfolio

computed in hindsight to grow exponentially with a rate determined by asset price drift and

volatility. Even if the prices of individual assets are going nowhere in the long run, short-

term uctuations in conjunction with constant rebalancing may lead to substantial pro�ts.

Furthermore, the best constant rebalanced portfolio will in all likelihood exponentially out-

perform any �xed constant rebalanced portfolio which includes buying and holding the best

asset in hindsight.

The intuition that the best constant rebalanced portfolio is a good performance target is

motivated by the well known fact that if market returns are independent and identically

distributed from one day to the next, the expected utility, for a wide range of utility func-

tions including the log utility, is maximized by a constant rebalanced portfolio strategy.

Additionally, \turnpike" theory (see Huberman and Ross (1983), Cox and Huang (1992),

and references therein) �nds an even broader class of utility functions for which, by virtue
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of their behavior at large wealths, constant rebalancing becomes optimal as the investment

horizon tends to in�nity. In all these settings, the optimal constant rebalanced portfolio

depends on the underlying distribution, which is unknown in practice. Targeting the best

constant rebalanced portfolio computed in hindsight for the actual market sequence is one

way of dealing with this lack of information.

The question is to what extent can a non-anticipating investment strategy perform as well

as the best constant rebalanced portfolio determined in hindsight? We address this question

from a distribution{free, worst-sequence perspective with no restrictions on asset price be-

havior. Asset prices can increase or decrease arbitrarily, even drop to zero. We assume no

underlying randomness or probability distribution on asset price changes.

The analysis is best expressed in terms of a contest between an investor and nature. After

the investor has selected a non-anticipating investment strategy, nature, with full knowledge

of the investor's strategy (and its dependence on the past), selects that sequence of asset

price changes which minimizes the ratio of the wealth achieved by the investor to the wealth

achieved by the best constant rebalanced portfolio computed in hindsight for the selected

sequence. The investor selects an investment strategy that maximizes the minimum ratio.

In the main part of the paper we determine the optimum investment strategy and compute

the max-min value of the ratio of wealths.

It may seem that such an analysis is overly pessimistic and risk averse since in reality there is

no deliberate force trying to minimize investment returns. What is striking, however, is that

if investment performance is measured in terms of rate of return or exponential growth rate

per investment period, even this pessimistic point of view yields a favorable result. More

speci�cally, the main result of this paper is the identi�cation of an investment algorithm

that achieves wealth Ŝn at time n that satis�es

Ŝn � S�n=
X
P

ni=n

�
n

n1; : : : ; nm

�
2�nH(

n1
n
;::: ;nm

n
) = S�nVn; (1)

for every market sequence, where S�n is the wealth achieved by the best constant rebalanced

portfolio in hindsight, and H(p1; : : : ; pm) = �P pj log pj is the Shannon entropy function.
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Since it can be shown that Vn �
p
2=(�n) (for m = 2 assets), this factor, the price of

universality, will not a�ect the exponential growth rate of wealth of Ŝn relative to S�n, i.e.,

lim inf(1=n) log(Ŝn=S
�
n) � 0. In other words, the rate of return achieved by the optimal

strategy converges over time to that of the best constant rebalanced portfolio computed

in hindsight, uniformly for every sequence of asset price changes. The bound (1) is the

best possible; there are sequences of price changes that hold Ŝn=S
�
n to this bound for any

non-anticipating investment strategy.

The problem of achieving the best portfolio in hindsight leads naturally to the consideration

of a new derivative security which might be called the hindsight allocation option. The

hindsight allocation option has a payo� at time n equal to S�n, the wealth earned by investing

one dollar according to the best constant rebalanced portfolio (the best constant allocation

of wealth) computed in hindsight for the observed stock and bond performance. This option

might, for example, interest investors who are uncertain about how to allocate their wealth

between stocks and bonds. By purchasing a hindsight allocation option, an investor achieves

the performance of the best constant allocation of wealth determined with full knowledge of

the actual market performance.

In Section 4 we argue that the max-min ratio computed above yields a tight upper bound on

the price of this option. Speci�cally, equation (1) suggests that Ŝn is an arbitrage opportunity

if the option price is more than 1=Vn. We compare this bound to the no-arbitrage option

price for two well known models of market behavior, the discrete time binomial lattice model

and the continuous time geometric Wiener model. We consider only the simple case of a

volatile stock and a bond with a constant rate of return. It is shown that the no-arbitrage

prices for these restricted market models have essentially the same asymptotic c
p
n behavior

as the upper bound 1=Vn. Di�erent model parameter choices (volatility, interest rate) can

yield more favorable constants c.

The pricing of the hindsight allocation option in the binomial and geometric Wiener models

can also be thought of in terms of the max-min framework. The models can be viewed as

constraints on nature's choice of asset price changes. The underlying distribution in the
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geometric Wiener model serves as a technical device for constraining the set of continuous

asset price paths from which nature can choose. Because these markets are complete for the

special case of one stock and one bond, the best constant rebalanced portfolio computed in

hindsight can be hedged perfectly given a unique initial wealth. This wealth corresponds to

the no-arbitrage price of the hindsight allocation option. Furthermore, the max-min ratio of

wealths obtained by the investor and nature, when nature is constrained by these models,

must be the reciprocal of this unique initial wealth.

Early work on universal portfolios (portfolio strategies performing uniformly well with respect

to constant rebalanced portfolios) can be found in Cover and Gluss (1986), Larson (1986),

Cover (1991), Merhav and Feder (1993), and Cover and Ordentlich (1996).

Cover and Gluss (1986) restrict daily returns to a �nite set and provide an algorithm, based

on the the approachability-excludability theorem of Blackwell (1956a, 1956b), that achieves a

wealth ratio Ŝn=S
�
n � e�c

p
n, for m = 2 stocks, where c is a positive constant. Larson (1986),

also restricting daily returns to a �nite set, uses a compound Bayes approach to achieve

Ŝn=S
�
n = e��n, for arbitrarily small � > 0. Cover (1991) de�nes a family of �-weighted

universal portfolios and uses Laplace's method of integration to show, for a bounded ratio

of maximum to minimum daily asset returns, that Ŝn=S
�
n � cn=n

m�1 for m stocks, where cn

is the determinant of a certain sensitivity matrix measuring the empirical volatility of the

price sequence. Merhav and Feder (1993) establish polynomial bounds on Ŝn=S
�
n under the

same constraints.

The �rst individual sequence (worst-case) analysis of the universal portfolio of Cover (1991)

is given in Cover and Ordentlich (1996), where it is shown that a Dirichlet(1/2) weighted uni-

versal portfolio achieves a worst case performance of Ŝn=S
�
n � c=n(m�1)=2. This analysis is also

extended to investment with side information, with similar results. Jamshidian (1992) ap-

plies the universal portfolio of Cover (1991) (with � uniform) to a geometric Wiener market,

establishing the asymptotic behavior of Ŝ(t)=S�(t), and showing (1=t) log Ŝ(t)=S�(t) ! 0,

for such markets.
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The paper is organized as follows. Section 2 establishes notation and some basic de�ni-

tions. The individual-sequence performance and game-theoretic analysis are established in

Section 3. Section 4 contains the hindsight allocation option pricing analysis.

2 Notation and de�nitions

We represent the behavior of a market ofm assets for n trading periods by a sequence of non-

negative, non-zero (at least one non-zero component) price{relative vectors x1; : : : ;xn 2 IRm
+ .

We refer to xn = x1; : : : ;xn as the market sequence. The jth component of the ith vector

denotes the ratio of closing to opening price of the jth asset for the ith trading period. Thus

an investment in asset j on day i increases by a factor of xij.

Investment in the market is speci�ed by a portfolio vector b = (b1; : : : ; bm)
t with non-

negative entries summing to one. That is, b 2 B, where

B = fb : b 2 IRm
+ ;

mX
j=1

bj = 1g:

A portfolio vector b denotes the fraction of wealth invested in each of the m assets. An

investment according to portfolio bi on day i multiplies wealth by a factor of

btixi =

mX
j=1

bijxij:

A sequence of n investments according to portfolio choices b1; : : : ;bn changes wealth by a

factor of

nY
i=1

btixi:

A constant rebalanced portfolio investment strategy uses the same portfolio b for each trading

day. Assuming normalized initial wealth S0 = 1, the �nal wealth will be

Sn(x
n;b) =

nY
i=1

btxi:

6



For a sequence of price{relatives xn it is possible to compute the best constant rebalanced

portfolio b� as

b� = argmax
b2B

Sn(x
n;b);

which achieves a wealth factor of

S�n(x
n) = max

b2B
Sn(x

n;b):

The best constant rebalanced portfolio b� depends on knowledge of market performance for

time 1; 2; : : : ; n; it is not a non-anticipating investment strategy.

This brings up the de�nition of a non-anticipating investment strategy.

De�nition 1 A non-anticipating investment strategy is a sequence of maps

bi : IR
m(i�1)
+ ! B; i = 1; 2; : : :

where

bi = bi(x1; : : : ;xi�1)

is the portfolio used on day i given past market outcomes xi�1 = x1; : : : ;xi�1.

3 Worst-case analysis

We now present the main result, a theorem characterizing the extent to which the best

constant rebalanced portfolio computed in hindsight can be tracked in the worst case. Our

analysis is best expressed in terms of a contest between an investor, who announces a non-

anticipating investment strategy b̂i(�), and nature, who, with full knowledge of the investor's

strategy, selects a market sequence xn = x1;x2; : : : ;xn to minimize the ratio of wealths

Ŝn(x
n)=S�n(x

n), where Ŝn(x
n) is the investor's wealth against sequence xn and is given by

Ŝn(x
n) =

nY
i=1

b̂
t

i(x
i�1)xi:
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Thus, nature attempts to induce poor performance on the part of the investor relative

to the best constant rebalanced portfolio b� computed with complete knowledge of xn.

The investor, wishing to protect himself from this worst case, selects that non-anticipating

investment strategy b̂i(�) which maximizes the worst-case ratio of wealths.

Theorem 1 (Max-min ratio) For m assets and all n,

max
b̂

min
xn

Ŝn(x
n)

S�n(xn)
= Vn;

where

Vn =

" X
n1+:::+nm=n

�
n

n1; : : : ; nm

�
2�nH(

n1
n
;::: ;nm

n
)

#�1
; (2)

and

H(p1; : : : ; pm) = �
mX
j=1

pj log pj

is the Shannon entropy function.

Remark: For m = 2, the value Vn is simply

Vn =

 
nX

k=0

�
n

k

��
k

n

�k �
n� k

n

�n�k!�1
; (3)

and it is shown in Section 3.2 that 2=
p
n+ 1 � Vn � 1=(2

p
n+ 1) for all n. Thus Vn behaves

essentially like 1=
p
n. For m > 2, Vn � c(1=

p
n)m�1:

Remark: It is noted in Section 3.3 that

Vn �
�
�
m
2

�
p
�

�
2

n

� (m�1)
2

;

in the sense that

lim
n!1

Vn
�(m2 )p

�

�
2
n

� (m�1)
2

= 1:
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For m = 2 this reduces to Vn �
p
2=�(1=

p
n).

Remark: The max-min optimal strategy for m = 2 will be speci�ed in equations (8){(13).

These equations are followed by an alternative de�nition of the optimal strategy in terms of

extremal strategies.

We note that the negative logarithm of the max-min ratio of wealths given by equation (2)

also corresponds to the solution of a min-max point-wise redundancy problem in universal

data compression theory. The point-wise redundancy problem was studied and solved by

Shtarkov (1987) and earlier works referenced therein. A principal result of the present work,

which is developed in greater information theoretic detail in Cover and Ordentlich (1996) and

Ordentlich (1996), is that worst sequence market performance is bounded by worst sequence

data compression.

The strategy achieving the maximum in Theorem 1, as developed in the proof below, depends

on the horizon n. We note, however, that Cover and Ordentlich (1996) exhibits an in�nite

horizon investment strategy, the Dirichlet-weighted universal portfolio, denoted by b̂
D
(�),

which for m = 2 assets achieves a wealth ratio ŜD
n (x

n)=S�n(x
n) satisfying

min
xn

ŜD
n (x

n)

S�n(x
n)
� 1p

2�
Vn: (4)

At time i, the Dirichlet-weighted universal portfolio investment strategy uses the portfolio

b̂
D

i = b̂
D

i (x
i�1) =

R
B bSi�1(b;x

i�1)d�(b)R
B Si�1(b;x

i�1)d�(b)
; i = 1; 2; : : : (5)

where

Si(b;x
i) = Si(b) =

iY
j=1

btxj; and S0(b;x
0) = 1:

The measure � on the portfolio simplex B is the Dirichlet(1=2; : : : ; 1=2) prior with density

d�(b) =
�(m

2
)

[�(1
2
)]m

 
1�

m�1X
j=1

bj

!� 1
2 m�1Y
j=1

b
� 1

2

j db;

m�1X
j=1

bj � 1; bj � 0; j = 1; : : : ; m� 1;
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where �(�) denotes the Gamma function. The running wealth factor achieved by the Dirichlet-

weighted universal portfolio through each time n is

ŜD
n (x

n) =

Z
B
Sn(b;x

n)d�(b):

Thus the max-min ratio can be achieved to within a factor of
p
2� for all n by a single

in�nite horizon strategy. The bound (4) generalizes to m > 2 so that for each m, the worst-

case wealth achieved by the Dirichlet-weighted universal portfolio is within a constant factor

(independent of n) of Vn.

The signi�cance of Theorem 1 can be appreciated by considering some naive choices for the

optimum investor strategy b̂. Suppose, for m = 2 assets, that b̂ corresponds to investing

half of the initial wealth in a buy-and-hold of asset 1 and the other half in a buy-and-hold

of asset 2. In this case the �rst two portfolio choices are

b̂1 =

�
1

2
;
1

2

�t

and b̂2 =

�
x11

x11 + x12
;

x12

x11 + x12

�t

: (6)

Since we are allowing nature to select arbitrary price-relative vector sequences, nature could

set x1 = (0; 2)t and x2 = (2; 0)t, in which case the investor using the split buy-and-hold

strategy (6) goes broke after two days. On the other hand, for this two day sequence, the

best constant rebalanced portfolio is b� = (1=2; 1=2)t and yields a wealth factor S�2(x1;x2)

of 1.

Suppose the investor instead opts to rebalance his wealth daily to the initial (1=2; 1=2)

proportions. Here b̂i is the constant rebalanced portfolio b = (1=2; 1=2)t. If nature then

chooses the sequence of price{relative vectors xn = (2; 0)t; (2; 0)t; : : : ; (2; 0)t the investor

earns a wealth factor Ŝn(x
n) = 1 while the best constant rebalanced portfolio b� = (1; 0)t

earns S�n(x
n) = 2n. The ratio Ŝn=S

�
n of these two wealths decreases exponentially in n while

the max-min ratio Vn decreases only polynomially. In particular, the wealth achieved by the

max-min optimal strategy is at least 2n=(2
p
n+ 1) for this sequence.

These two investment strategies are particularly naive. A more sophisticated scheme might

start o� with b̂1 = (1=2; 1=2)t and then use the best constant rebalanced portfolio for the
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observed past. This scheme, however, is also awed, since if nature chooses x1 = (1; 0)t,

the investor would use b̂2 = (1; 0)t the following day and then would go broke if nature set

x2 = (0; 1)t. One might think of �xing this scheme by using a time varying mixture of the

(1=2; 1=2) portfolio and the best constant rebalanced portfolio for the past. However, this

class of strategies also fails to achieve Vn.

We now proceed with the proof of Theorem 1. The following lemma is used. In the sequel

we adopt the conventions that a=0 =1 if a > 0, and that 0=0 = 0.

Lemma 1 If �1; : : : ; �n � 0, �1; : : : ; �n � 0, thenPn
i=1 �iPn
i=1 �i

� min
j

�j

�j
: (7)

Proof of Lemma 1: Let

J = argmin
j

�j

�j
:

The lemma is trivially true if �J = 0 since the right side of (7) is zero. So assume �J > 0.

Then, if �J = 0 the lemma is true since both the left and right sides of (7) are in�nity.

Therefore assume �J > 0 and �J > 0. ThenPn

j=1 �jPn

j=1 �j
=

�J(1 +
P

j 6=J
�j
�J
)

�J(1 +
P

j 6=J
�j
�J
)
� �J

�J

because

�j

�j
� �J

�J

which implies

�j

�J
� �j

�J

for all j. 2

Proof of Theorem 1: For ease of exposition we prove the theorem for m = 2. The

generalization of the argument to m > 2 is straightforward.
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Thus, for the case of m = 2 we must show that

max
b̂

min
xn

Ŝn(x
n)

S�n(x
n)

= Vn;

where

Vn =

 
nX

k=0

�
n

k

��
k

n

�k �
n� k

n

�n�k!�1
:

We prove that

max
b̂

min
xn

Ŝn(x
n)

S�n(x
n)
� Vn;

by explicitly specifying the max-min optimal strategy b̂. We de�ne the strategy by keeping

track of the indices of the terms in the product
Qn

i=1 b̂
t

ixi. For sequences jn 2 f1; 2gn let

n1(j
n) and n2(j

n) denote respectively the number of 1's and the number of 2's in jn. That

is, if jn = (j1; : : : ; jn),

nr(j
n) =

nX
i=1

I(ji = r); (8)

where I(�) is the indicator function. Let

w(jn) = Vn

�
n1(j

n)

n

�n1(jn)�n2(jn)
n

�n2(jn)

: (9)

Then, since
P

jn2f1;2gn w(j
n) = 1, w(jn) is a probability measure on the set of sequences

jn 2 f1; 2gn. For l < n, let

w(jl) =
X

jl+1;::: ;jn

w(jl; jl+1; : : : ; jn) (10)

be the marginal probability mass of j1; : : : ; jl. This marginal probability may also be denoted

by w(jl�1; jl). Finally, de�ne the non-anticipating investment strategy b̂l = (b̂l1; b̂l2)
t

b̂l1(x
l�1) =

P
jl�12f1;2gl�1 w(j

l�1; 1)
Ql�1

i=1 xijiP
jl�12f1;2gl�1 w(j

l�1)
Ql�1

i=1 xiji
; (11)

and

b̂l2(x
l�1) =

P
jl�12f1;2gl�1 w(j

l�1; 2)
Ql�1

i=1 xijiP
jl�12f1;2gl�1 w(j

l�1)
Ql�1

i=1 xiji
; (12)
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with

b̂11 = w(1) and b̂12 = w(2): (13)

An alternative characterization of the max-min optimal strategy, which turns out to be

equivalent to the above, is as follows. Break the initial wealth into 2n piles, one corresponding

to each sequence jn, where the fraction of initial wealth assigned to pile jn is precisely w(jn)

as given in (9). Now invest all the wealth in pile jn in asset j1 on day 1. From then on,

for each day i, shift the entirety of the running wealth for this pile into asset ji. Do this in

parallel for each of the 2n piles jn. We refer to the strategy used to manage pile jn as the

extremal strategy corresponding to the sequence jn.

The wealth factor achieved by the investor using (11) and (12) is

Ŝn(x
n) =

nY
l=1

b̂
t

lxl

=

nY
l=1

2
666664

X
jl�12f1;2gl�1

w(jl�1; 1)xl1

l�1Y
i=1

xiji +

X
jl�12f1;2gl�1

w(jl�1; 2)xl2

l�1Y
i=1

xiji

3
777775

X
jl�12f1;2gl�1

w(jl�1)
l�1Y
i=1

xiji

=

nY
l=1

X
jl2f1;2gl

w(jl)

lY
i=1

xiji

X
jl�12f1;2gl�1

w(jl�1)
l�1Y
i=1

xiji

=
X

jn2f1;2gn
w(jn)

nY
i=1

xiji (14)

= Vn

nX
k=0

�
k

n

�k �
n� k

n

�n�k
X(k)

where

X(k)
4
=

X
jn:n1(jn)=k

nY
i=1

xiji;
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and (14) follows from a telescoping of the product.

It is apparent from equation (14) that the extremal strategy formulation of the max-min

optimal strategy is equivalent to the portfolio formulation (8){(13). The extremal strategies

simply \pick o�" the product of the price relatives corresponding to the sequence of assets

with indices jn. Equation (14) represents the sum of the wealths obtained by the extremal

strategies operating in parallel.

Note that for 0 � k � n,

�
k

n

�k �
n� k

n

�n�k
= max

0�b�1
bk(1� b)n�k: (15)

Also note that S�n(x
n) can be rewritten as

S�n(x
n) =

nY
i=1

b�txi (16)

=
X

jn2f1;2gn

nY
i=1

b�jixiji

=

nX
k=0

b�k(1� b�)n�kX(k);

where b� = (b�; 1� b�)t achieves the maximum in (16).

Therefore, for any market sequence xn, Lemma 1 and the above imply that

Ŝn(x
n)

S�n(xn)
=

Vn
Pn

k=0

�
k
n

�k �n�k
n

�n�k
X(k)Pn

k=0 b
�k(1� b�)n�kX(k)

� Vn min
0�k�n

�
k
n

�k �n�k
n

�n�k
b�k(1� b�)n�k

(17)

� Vn; (18)

where (17) follows from a combination of Lemma 1 and the cancellation of the sums of

products of xiji , and (18) follows from (15). Since the above holds for all sequences xn, we

have shown that

max
b̂

min
xn

Ŝn(x
n)

S�n(xn)
� Vn: (19)
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To show equality in (19) we consider the following possibilities for xn. For each jn 2 f1; 2gn

de�ne xn(jn) = x1(j1); : : : ;xn(jn); as

xi(ji) =

8<
: (1; 0)t if ji = 1;

(0; 1)t if ji = 2:
(20)

Let

K = fxn(jn) : jn 2 f1; 2gng

be the set of such extremal sequences xn.

An important property shared by all non-anticipating investment strategies b̂(�) on the

sequences (20) is that X
xn2K

Ŝn(x
n) = 1: (21)

Also note that, for xn(jn) 2 K, the best constant rebalanced portfolio is easily veri�ed to be

b�(xn(jn)) =
1

n
(n1(j

n); n2(j
n))

t

so that

S�n(x
n(jn)) =

�
n1(j

n)

n

�n1(jn)�n2(jn)
n

�n2(jn)

=
w(jn)

Vn
:

Therefore X
xn2K

S�n(x
n) =

1

Vn
:

Since the minimum is less than any average, we obtain equality in (19) from

min
xn2K

Ŝn(x
n)

S�n(xn)
�

X
~xn2K

�
S�n(~x

n)P
xn2K S

�
n(x

n)

�
Ŝn(~x

n)

S�n(~x
n)

(22)

=
X
~xn2K

Ŝn(~x
n)P

xn2K S
�
n(x

n)
(23)

=
1P

xn2K S
�
n(x

n)
(24)

= Vn; (25)
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which holds for any b̂: Thus

max
b̂

min
xn

Ŝn(x
n)

S�n(x
n)
� Vn:

Combining this with (19) completes the proof of the theorem. 2

Complexity. It appears from (11) and (12) that computing the max-min optimal portfolio

requires keeping track of the products
Ql�1

i=1 xiji for each sequence jl�1. This quickly becomes

prohibitively complex, since the number of such sequences is exponentially increasing in l.

Fortunately, a simpli�cation can be made.

This follows from the observation that w(jn) de�ned in (9) depends on jn only through its

type (n1(j
n); n2(j

n)), the number of 1's and 2's. This implies that w(jn�1; jn), for �xed

jn, is a function of jn�1 only through (n1(j
n�1); n2(jn�1)). The same applies to w(jn�1) =P

jn
w(jn�1; jn). Thus, by induction w(jl�1; jl) and w(jl�1), for all l, are constant on jl�1

with the same type.

Using this fact, the numerator and denominator of (11) and (12) can be evaluated by grouping

the products
Ql�1

i=1 xiji according to the type of j
l�1. More speci�cally, the numerator of (11),

for example, can be written as

X
jl�12f1;2gl�1

w(jl�1; 1)
l�1Y
i=1

xiji =

l�1X
k=0

w0l�1(k; 1)
X

jl�1:n1(jl�1)=k

l�1Y
i=1

xiji

=

l�1X
k=0

w0l�1(k; 1)Xl�1(k);

where w0l�1(k; 1) equals w(j
l�1; 1) when n1(j

l�1) = k and

Xl�1(k) =
X

jl�1:n1(jl�1)=k

l�1Y
i=1

xiji :

The denominator can be rewritten in a similar way.

It is now clear that only the quantities Xl�1(k) need be computed and stored instead of the

exponentially many products
Ql�1

i=1 xiji. The complexity of this is linear in l, since there are

16



only l such quantities. The simple recursions

Xl(k) = xl1Xl�1(k � 1) + xl2Xl�1(k)

Xl(0) = xl2Xl�1(0)

Xl(l) = xl1Xl�1(l � 1)

su�ce to update the Xl�1(k).

The above generalizes in the obvious way to m > 2 assets resulting in a computational

complexity growing like lm�1. Therefore, the max-min optimal portfolio is, in fact, compu-

tationally feasible for moderate m.

3.1 Game-theoretic analysis

A full game-theoretic result can also be proved. Speci�cally, we imagine the same contest as

above, except that mixed strategies are allowed. The payo� function is

A(b̂;xn) =
Ŝn(x

n)

S�n(x
n)
:

As before, the investor and nature respectively try to maximize and minimize the payo�.

Let Gn denote the game when played with this payo� function.

A mixed strategy for the investor is a probability distribution P(b̂) on the space of non-

anticipating investment strategies, b̂ = (b̂1; b̂2(x1); : : : ; b̂n(x
n�1)). Similarly, nature's mixed

strategies are probability distributions on the space of price{relative sequences and will be

denoted by Q(xn). The following theorem can then be proved.

Theorem 2 The value of the game Gn is

max
P(b̂)

min
Q(xn)

EA(b̂;xn) = min
Q(xn)

max
P(b̂)

EA(b̂;xn) = Vn;

where Vn is given by (2). Further, the investor's optimum strategy P� is the pure strategy

speci�ed by (8){(13).

17



Proof: We prove this for m = 2, the generalization being obvious. The pure strategy P�

is precisely the max-min optimal strategy (8){(13) achieving the maximum in Theorem 1.

Nature's optimum mixed strategy Q� (for m = 2) consists of choosing sequences from

K = fxn(jn) : jn 2 f1; 2gng

according to the probability distribution w(jn) given by (9). The proof of

min
Q(xn)

max
P(b̂)

EA(b̂;xn) � Vn; (26)

follows from equations (22) through (25). The theorem follows from (26) and (19). 2

The full game-theoretic analysis brings out a nice symmetry between the optimal investment

strategy and nature's optimal strategy. The optimal investment strategy P� is a pure strategy
constructed from the distribution w(jn) on binary strings given by (9). Nature's optimal

strategy, on the other hand, is to choose 0-1 price-relative vectors at random according to

this same probability distribution.

This analysis generalizes to games with payo�

A�(b̂;x
n) = �

 
Ŝn(x

n)

S�n(xn)

!
;

for which the following holds.

Theorem 3 For concave non-decreasing �, the game Gn(�) with payo� A�(b̂;x
n) has a

value V (Gn(�)) given by

V (Gn(�)) = �(Vn);

where Vn is given by (2) and the optimal strategies are the same as those for Gn.

3.2 Bounds on Vn

We prove the following lemma for m = 2.
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Lemma 2 For all n,

1

2
p
n+ 1

� Vn � 2p
n+ 1

:

Proof: We �rst prove the lower bound. In Cover and Ordentlich (1996), a sequential

portfolio selection strategy called the Dirichlet(1=2; : : : ; 1=2) weighted universal portfolio

was shown to achieve a wealth ŜD
n (x

n) satisfying

min
xn

ŜD
n (x

n)

S�n(xn)
� 1

2
p
n+ 1

:

Therefore

Vn = max
b̂

min
xn

Ŝn(x
n)

S�n(xn)

� min
xn

ŜD
n (x

n)

S�n(xn)

� 1

2
p
n + 1

;

proving the lower bound on Vn.

We now establish the upper bound. Write 1=Vn as

1

Vn
=

nX
k=0

�
n

k

��
k

n

�k �
n� k

n

�n�k

=
�(n+ 1)

nn

nX
k=0

kk(n� k)n�k

�(k + 1)�(n� k + 1)
; (27)

where �(x) =
R1
0

tx�1e�tdt is the Gamma function. If x is an integer, then �(x + 1) = x!.

In Marshall and Olkin (1979), it is shown that (x1; x2) 7! (xx11 xx22 )=(�(x1 + 1)�(x2 + 1)) is

Schur convex. This implies that under the constraint x1+x2 = n, it is minimized by setting

x1 = x2 = n=2. Therefore, each term in the summation (27) can be bounded from below by

kk(n� k)n�k

�(k + 1)�(n� k + 1)
�

n
2

n
2
n
2

n
2

�(n
2
+ 1)�(n

2
+ 1)

to obtain

1

Vn
� �(n+ 1)

nn
(n+ 1)

n
2

n
2
n
2

n
2

�(n
2
+ 1)�(n

2
+ 1)

=
(n+ 1)�(n+ 1)

2n�2(n
2
+ 1)

:
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The identity (see Rudin (1976))

�(n+ 1) =
2np
�
�

�
n + 1

2

�
�
�n
2
+ 1
�
; (28)

can now be applied to obtain

1

Vn
� (n+ 1)p

�

�(n+1
2
)

�(n
2
+ 1)

: (29)

The log convexity of �(x) (see Rudin (1976)) now implies that

�
�n
2
+ 1
�

� �

�
n

2
+

1

2

� 1
2

�

�
n

2
+

3

2

� 1
2

= �

�
n

2
+

1

2

�r
n+ 1

2
; (30)

where we have used the identity �(x + 1) = x�(x). Combining (29) and (30) we obtain

1

Vn
� n+ 1q

n+1
2

1p
�

=

r
2(n+ 1)

�

thereby proving that

Vn � 2p
n + 1

for all n. 2

This bound can be generalized to m > 2 with the help of

�(n + 1) = mn

mY
i=1

�(n+i
m
)

�( i
m
)
;

an extension of (28) to general m.

3.3 Asymptotics of Vn

The following lemma characterizes the asymptotic behavior of Vn for m stocks.
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Lemma 3 For all m, Vn satis�es

Vn �
�
�
m
2

�
p
�

�
2

n

� (m�1)
2

(31)

in the sense that

lim
n!1

Vn
�(m2 )p

�

�
2
n

� (m�1)
2

= 1:

The quantity Vn arises in a variety of settings including the max-min data compression

problem (see Shtarkov (1987)), the distribution of the longest common subsequence between

two random sequences (Karlin (1996)), and bounds on the probability of undetected errors

by linear codes (see Kl�ve (1995), Massey (1978), and Szpankowski (1995)). Lemma 3 is

proved in Shtarkov, Tjalkens, and Willems (1995) and an asymptotic expansion of Vn to

arbitrary order is given in Szpankowski (1995, 1996). A direct proof of Lemma 3 based on

a Riemann sum approximation is given in Ordentlich (1996).

In addition, Shtarkov (1987) obtains the bound

Vn �
"

mX
i=1

�
m

i

� p
�

�(i=2)

�n
2

�(i�1)=2#�1

implying one half of the asymptotic behavior in equation (31).

4 The hindsight allocation option

The results of the previous section motivate the analysis of the hindsight allocation option,

a derivative security which pays S�n(x
n), the result of investing one dollar according to the

best constant rebalanced portfolio computed in hindsight for the observed market behavior

xn. Let

�Hn =
1

Vn
:

Certainly the price of the hindsight allocation option should be no higher than �Hn. This

follows because �Hn dollars invested in the non-anticipating strategy described in the proof
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of Theorem 1 is guaranteed to result in wealth at time n no less than S�n(x
n) for all market

sequences xn. If the price of the hindsight allocation option were more than �Hn, selling the

option and investing only �Hn of the proceeds in the above strategy would be an arbitrage.

Note that this argument assumes the existence of a riskless asset for investing the surplus.

Therefore, �Hn is an upper bound on the price of the hindsight allocation option valid for any

market model (with a risk free asset). Furthermore, while the return of the best constant

rebalanced portfolio is expected to grow exponentially with n, the upper bound on the price of

the hindsight allocation option �Hn behaves like
p
n. This polynomial factor is exponentially

negligible relative to S�n.

Is �Hn a reasonable price for the hindsight allocation option? Probably not; the price should

be lower. Pricing the option at �Hn may be appropriate if no assumptions about market

behavior can be made. This is the case in Section 3, where no restrictions are placed on

nature's choice for the market behavior. Returns on assets can be arbitrarily high or low,

even zero. Actual markets, however, are typically less volatile. We gain more insight into this

issue by using established derivative security pricing theory to determine the no-arbitrage

price of the hindsight allocation option for two much studied models of market behavior, the

binomial lattice and continuous time geometric Brownian motion models.

4.1 Binomial lattice price

We consider a risky stock and a riskless bond. Accordingly, the price{relatives xi are assumed

to take on one of two values

xi 2
�
(1 + u; 1 + r)t; (1 + d; 1 + r)t

	
with r � 0, u > r > d. The �rst component of xi reects the change in the price of the

stock as measured by the ratio of closing to opening price. The second component indicates

that the riskless bond compounds at an interest rate of r for each investment period. The

parameters of the model are thus u; d; and r. If the stock price changes by a factor of 1 + u

it has gone \(u)p"; if it changes by a factor of 1 + d it has gone \(d)own".
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We will �nd that the no-arbitrage price Hn of the hindsight allocation option for this model is

closely related to �Hn, the upper bound obtained in the previous sections. It will be apparent

that for certain choices of d, u, and r, the upper bound �Hn is essentially attained.

For a sequence of n price{relatives xn = x1; : : : ;xn, the wealth acquired by a constant

rebalanced portfolio b = (b; 1� b)t can be written as

Sn(b) = [1 + r + b(u� r)]k[1 + r + b(d� r)]n�k;

where k is the number of vectors xi for which xi1 = 1 + u. Since logSn(b) is concave in b,

the best constant rebalanced portfolio b� = (b�; 1� b�)t is easily determined using calculus.

For 0 < k < n, de�ne ~b� as the solution to

d logSn(b)

db
= 0:

It is given by

~b� =
(1 + r)

n

�
k

r � d
� n� k

u� r

�
:

For k = 0, set ~b� = 0, and for k = n, set ~b� = 1. Then b� is given by

b� = max(0;min(1;~b�)):

We then obtain the wealth achieved by the best constant rebalanced portfolio as

S�n(x
n) = [1 + r + b�(u� r)]k[1 + r + b�(d� r)]n�k

=

8>>><
>>>:

(1 + r)n if b� = 0;

(1 + u)k(1 + d)n�k if b� = 1;

[1 + r + ~b�(u� r)]k[1 + r +~b�(d� r)]n�k if 0 < b� < 1:

If 0 < b� < 1, the wealth achieved can be written more explicitly as

S�n(x
n) =

�
1 + r + (1 + r)

�
k

n(r � d)
� n� k

n(u� r)

�
(u� r)

�k

�
�
1 + r + (1 + r)

�
k

n(r � d)
� n� k

n(u� r)

�
(d� r)

�n�k
;
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which simpli�es to

S�n(x
n) = (1 + r)n

�
k

n

�k �
n� k

n

�n�k �
u� d

r � d

�k �
u� d

u� r

�n�k
:

It is well known that for this model the no-arbitrage price Pn of any derivative security with

payo� Sn at time n is given by

Pn =
1

(1 + r)n
EQ(Sn);

where the expectation is taken with respect to Q, the so called equivalent martingale measure

on asset price changes. The unique equivalent martingale measure for this market is a

Bernoulli distribution on the sequence of \up" and \down" moves of the asset price with the

probability of an \up" equal to pu = (r � d)=(u � d) and the \down" probability equal to

pd = 1� (r � d)=(u� d) = (u� r)=(u� d).

We note that for the case of 0 < b� < 1

S�n(x
n) = (1 + r)n

�
k

n

�k �
n� k

n

�n�k
p�ku p

�(n�k)
d

4
= S�n(k):

Therefore,

Hn =
EQ(S�n)

(1 + r)n

=
1

(1 + r)n

X
k:0<b�<1

S�n(k)

�
n

k

�
pkup

n�k
d +

1

(1 + r)n

X
k:b�=0

(1 + r)n
�
n

k

�
pkup

n�k
d

+
1

(1 + r)n

X
k:b�=1

(1 + u)k(1 + d)n�k
�
n

k

�
pkup

n�k
d ;

which simpli�es to

Hn =
X

k:0<b�<1

�
n

k

��
k

n

�k �
n� k

n

�n�k
+

X
k:b�=0

�
n

k

�
pkup

n�k
d

+
X
k:b�=1

�
n

k

��
pu

�
1 + u

1 + r

��k �
pd

�
1 + d

1 + r

��n�k
:
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The range of k such that 0 < b� < 1 is

pu <
k

n
< pu

�
u+ 1

r + 1

�
:

Thus

Hn =
X

pu<
k
n
<pu

u+1
r+1

�
n

k

��
k

n

�k �
n� k

n

�n�k
+

X
k
n
�pu

�
n

k

�
pkup

n�k
d

+
X

k
n
�pu u+1

r+1

�
n

k

��
pu

�
1 + u

1 + r

��k �
pd

�
1 + d

1 + r

��n�k
:

It is useful to note that

pu
1 + u

1 + r
+ pd

1 + d

1 + r
= 1:

This implies that

Hn �
X

pu<
k
n
<pu

u+1
r+1

�
n

k

��
k

n

�k �
n� k

n

�n�k
;

and

Hn �
X

pu<
k
n
<pu

u+1
r+1

�
n

k

��
k

n

�k �
n� k

n

�n�k
+ 2:

Notice the similarities between these bounds and the expression for Vn = 1= �Hn given by (3).

It is possible to choose r; u; and d so that pu < 1=n and pu((u+ 1)=(r + 1)) > (n� 1)=n, in

which case the value of the hindsight allocation option is at least �Hn � 2.

In summary, the no-arbitrage price Hn of the hindsight allocation is given by

Hn =
X

pu<
k
n
<pu

u+1
r+1

�
n

k

��
k

n

�k �
n� k

n

�n�k
+

X
k
n
�pu

�
n

k

�
pkup

n�k
d

+
X

k
n
�pu u+1

r+1

�
n

k

��
pu

�
1 + u

1 + r

��k �
pd

�
1 + d

1 + r

��n�k
;

where the �rst summation comprises the bulk of the price for reasonable parameter values.

The terms appearing in this sum are identical to those in the expression (3) for Vn = 1= �Hn.
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The number of such terms appearing in the sum depends on the parameter values. A

Reimann sum approximation argument shows that for �xed parameter values Hn � c
p
n,

where the constant c depends only on the parameters.

4.2 Geometric Brownian motion price

In this section, we give the price of the hindsight allocation option for the classical continuous

time Black-Scholes market model with one stock and one bond. The stock price Xt follows

a geometric Brownian motion and evolves according to the stochastic di�erential equation

dXt = �Xtdt+ �XtdBt;

where � and � are constant, and B is a standard Brownian motion. Note that here Xt

denotes a price, not a price{relative. The bond price �t obeys

d�t = �trdt

where r is constant and therefore

�t = ert�0:

Let St(b) be the wealth obtained by investing one dollar at t = 0 in the constant rebalanced

portfolio b = (b; 1 � b)t, where b is the proportion of wealth invested in the stock. Then

St(b) satis�es the stochastic di�erential equation

dSt(b)

St(b)
= b

dXt

Xt

+ (1� b)
d�t

�t
; (32)

which can be solved to give

St(b) = exp

�
�b2�2t

2
+ b

�
log

Xt

X0
+
�2t

2

�
+ (1� b)rt

�
: (33)

That this solves (32) can be veri�ed directly using Ito's Lemma (see Du�e (1996), Karatzas

and Shreve (1991)). Notice that, for �xed �2 and r, the wealth St(b) depends on the stock

price path only through the �nal price Xt.
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The best constant rebalanced portfolio in hindsight at time T is obtained by maximizing the

exponent of (33) for t = T under the constraint that 0 � b � 1. This results in

b�T = max

�
0;min

�
1;
1

2
+

(1=T ) log(XT=X0)� r

�2

��
: (34)

The wealth achieved by the best constant rebalanced portfolio is then obtained by evaluating

(33) at b = b�T resulting in

S�T = ST (b
�
T ) =

8>>><
>>>:

erT if b�T = 0

e
�2T
2

b�
T
2+rT if 0 � b�T � 1

XT

X0
if b�T � 1:

From the martingale approach to options pricing, the no-arbitrage price at t = 0 of the

hindsight allocation option with duration T is given by

H0;T = �0EQ

ST (b
�
T )

�T

= e�rTEQST (b
�
T ); (35)

where Q is the equivalent martingale measure or the unique (in this case) probability measure

under which Xt=�t is a martingale, and assuming that ST (b
�
T ) is integrable under Q, which

it is.

It is well known (see Du�e (1996)) that under the equivalent martingale measure Q the

stock price Xt obeys

dXt = rXtdt+ �XtdBt:

This and Ito's Lemma imply that under Q, the expression log(XT=X0) appearing in the expo-

nent of (33) is normally distributed with mean (r� (1=2)�2)T and variance �2T . Therefore,

the random variable

Y
4
=

log(XT=X0)� (r � (1=2)�2)Tp
�2T

is standard normal. It can be rewritten as

Y =
p
�2T

�
1

2
+

(1=T ) log(XT=X0)� r

�2

�
; (36)
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so that, by equation (34),

p
�2T (b�T ) = max(0;min(

p
�2T ; Y )):

Equation (36) can be solved for XT=X0 resulting in

XT

X0

= eY
p
�2T+(r��2=2)T :

The expectation (35) is then easily evaluated as

e�rTEQ[ST (b
�
T )] =

�
EQ[I(Y � 0)] + EQ[e

Y 2

2 I(Y 2 [0;
p
�2T ])]

+ EQ[e
Y
p
�2T�T�2=2I(Y >

p
�2T )]

� : (37)

The �rst expectation is clearly equal to 1=2, since Y is standard normal. The middle expec-

tation is

EQ[e
Y 2

2 I(Y 2 [0;
p
�2T ])] =

1p
2�

Z p
�2T

0

ey
2=2e�y

2=2dy

=

r
�2T

2�
:

Finally, the third expectation is

EQ[e
Y
p
�2T�T�2=2I(Y >

p
�2T )] =

1p
2�

Z 1

p
�2T

ey
p
�2T�T�2=2e�y

2=2dy

=
1p
2�

Z 1

p
�2T

e�(1=2)(y�
p
�2T )2dy

=
1

2
:

Thus (37) reduces to a surprisingly simple form. The no-arbitrage price H0;T of the hindsight

allocation option is

H0;T = 1 +

r
�2T

2�
:

The price is a�nely increasing in the volatility � and increases like the square root of the

duration T . The dependence on duration matches the
p
n growth of the discrete-time upper

bound �Hn and the binomial lattice price Hn. If the hindsight allocation option payo� is

rede�ned to be S�n(x
n) � erT (the excess return of the best constant rebalanced portfolio

beyond the return of the bond) then the price is simply
p
�2T=(2�). This can be thought

of as a premium for volatility.
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5 Conclusion

The worst sequence approach to the problem of achieving the best portfolio in hindsight

leads to a favorable result: the max-min optimal portfolio strategy for m assets loses only

((m � 1)=2)(logn)=n in the rate of return in the worst case. This yields an asymptotically

negligible di�erence in growth rate as the number of investment periods n grows to in�nity.

In practice we would expect even better performance, since real markets are less volatile than

the max-min market identi�ed here. This intuition is partially validated by the hindsight

allocation pricing analysis for the binomial and geometric Wiener market models which

indicates that the cost of achieving the best portfolio in hindsight depends monotonically on

market volatility.
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