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Universal Portfolios with Side Information

Thomas M. Cover, Fellow, IEEE, and Erik Ordentlich

Abstract— We present a sequential investment algorithm, the
pu-weighted umiversal portfolio with side information, which
achieves, to first order in the exponent, the same wealth as the
best side-information dependent investment strategy (the best
state-constant rebalanced portfolio) determined in hindsight
from observed market and side-information outcomes.

This is an individual sequence result which shows that
the difference between the exponential growth rates of
wealth of the best state-constant rebalanced portfolio and the
universal portfolio with side information is uniformly less than
(d/(2n))log (n + 1) + (k/n)log?2 for every stock market and
side-information sequence and for all time n. Here d = k(m — 1)
is the number of degrees of freedom in the state-constant
rebalanced portfolio with % states of side information and m
stocks. The proof of this result establishes a close connection
between universal investment and universal data compression.

Index Terms— Universal investment, universal data compres-
sion, portfolio theory, side information.

I. INTRODUCTION

E CONSIDER the problem of universal sequential
Winvestment in a market of m stocks with side in-
formation. The behavior of the market is specified by an
arbitrary sequence of nonnegative price-relative (stock) vec-
tors, 1,%g,-+,Z, € R and an associated sequence of
side-information states yi,%y9, -, ¥y, taking on values in a
finite set JV = {1,---,k}. The jth entry z;; of the ith price
relative vector x; denotes the ratio of closing to opening
price of the jth stock for the ith trading day. The side-
information sequence may depend in an arbitrary manner upon
the entire stock market sequence. An investment at time ¢ in
this market is specified by a portfolio vector b; € R™ with
nonnegative entries summing to one. The components of &;
are the proportions of current wealth invested in each stock
at time 4.

The conventional treatment of the problem of adaptive
investment is grounded in the distributional approach to in-
vestment pioneered by Kelly (Kelly gambling [1]) and many
others. This approach assumes the existence of an underly-
ing probability distribution governing the sequence of price
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relatives (returns on gambles in the Kelly problem). Given
knowledge of this underlying distribution, it is possible to
specify a sequence of investment decisions or portfolio choices
which achieves a growth rate of wealth that is maximal in a
probabilistic sense [2]-[4]. The universal investment problem
in this conventional setiing arises by assuming that the investor
has limited knowledge of the true distribution underlying the
market. It is known only that this distribution belongs to
a certain set P of possible distributions. The goal then is
to exhibit a sequential investment algorithm which achieves,
with probability one, the optimal growth rate of wealth for
all distributions in P. This has been carried out by Algoet
[5], with P being the collection of all stationary ergodic
distributions on infinite sequences of price relative vectors.
The algorithms described in [5] derive the next portfolio choice
from estimates of the underlying conditional distribution of the
next price relative given the observed past.

In this paper, we depart from the conventional approach and
make no distributional assumptions on the sequence of price
relatives and side-information states. Instead we establish a
set of allowable investment actions (sequences of portfolio
choices b;), and seck to achieve the same asymptotic growth
rate of wealth as the best action in this set, not in any kind of
stochastic sense, but uniformly over all possible sequences of
price relatives and side-information states. Thus we seek an
individual sequence minimax regret solution.

The set of allowable investment actions or algorithms we
consider is comprised of the state-constant rebalanced portfo-
lios. At each time ¢ € {1,---,n}, a state-constant rebalanced
portfolio investment algorithm invests in this market using one
of k distinct portfolios b(1), - - -, b(k) depending on the current
state of side information y;. We refer to the case of & = 1 as
a constant rebalanced portfolio.

Our main result is summarized as follows. Let

Sa@ ) = i)

be the wealth achieved in hindsight by the best state-constant
rebalanced portfolio for the sequence of price relatives z™
and side-information states y™. We exhibit a sequential in-
vestment algorithm, the p-weighted universal portfolio with
side information, which achieves a wealth

Sn(f"'n ly*) =e

that tracks S*(z™|y™) to first order in the exponent. Specifi-
cally, it is shown that : :

"Wn'(zﬂ [y™)

Wa(a"ly") > Wi (2"|y") — (d](2n))log (n + 1)
— (k/n)log2 -
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uniformly for every stock vector sequence z™ and side-
information sequence y™. Here d = k{m—1),m is the number
of stocks, and k is the cardinality of the side-information
state space. The quantities W,,("|y™) and W7 (2" |y™) are the
exponential growth rates of wealth for each portfolio. Since
d is exactly the number of degrees of freedom in a state-
constant rebalanced portfolio algorithm we see that the cost of
achieving universal performance is essentially (1/(2n))logn
in the exponential growth rate of wealth per degree of freedom.
This performance bound is very similar to that arising in
universal data compression and source modeling. As shown
later, this similarity is no accident, and is attributable to
a close connection between the present universal sequential
investment problem and the universal data compression of
independent and identically distributed (i.i.d.) sources.

It will be seen, in fact, that the apparently more compli-
cated investment problem, involving as it does investment
actions and price relative vectors with more than one nonzero
component, is dominated by the simple Kelly gambling or
horse race problem and its well-studied data compression
counterpart. The horse race. market turns out to be the worst
case in the sense that, for this market, the bounds on the
worst case performance of the universal portfolio relative to
the best constant rebalanced portfolio are achieved essentially
with equality. In this sense, uniformly good performance is
hardest to achieve for the simplest market.

Our motivation for focusing on the collection of state-
constant rebalanced portfolios arises from the distributional
approach to investment discussed above. It is well known
that if the price relatives are independent and identically
distributed, the optimal growth rate of wealth is achieved by
a constant rebalanced portfolio [2], [3], [6]. Thus the constant

rebalanced portfolios possess certain optimality properties .

in the conventional distributional setting. The state-constant
rebalanced portfolios are obtained as natural extensions of
the constant rebalanced portfolios to the side-information
setting. It is important to realize, however, that aside from this
motivational link, the present problem and solution possess no
distributional or random aspect.

Another source of motivation for considering the state-
constant rebalanced portfolios is the sequential compound
Bayes decision problem of Robbins, Hannan, and others
[7]-[9]. This problem involves a sequence of repeated plays
of a game against nature. The goal is to exhibit a sequential
player strategy which approximates the performance of the
best constant player strategy determined in hindsight for any
sequence of ‘moves by nature. Our probiem fits into this
framework if we identify the player’s moves as portfolio
choices b, nature’s moves as price relative vectors z, and
—logb'z as a loss function. Allowing the player’s moves. to
vary with side information is a natural generalization of this
basic setup. .

The difficulty is that the classical approach to the compound
Bayes decision problem does not readily apply to universal
investment. As discussed by Merhav and  Feder [10], the
classical solution makes certain assumptions about the loss
function and the domain of the game which are not valid in
the investment problem. The principal obstacle is the unbound-

edness of the loss function —log (b*z) as b'x tends to zero. Our
method, which is a departure from the classical approach to
the general Bayes decision problem, takes advantage of the
special structure of the investment problem to overcome this
difficulty. ‘

The side-information aspect of the present universal invest-
ment problem is new, but several prior works have considered
the problem with no side information. Cover and Gluss [13]
show that the approachability—excludability theorem of Black-
well [11], [12] can be used to define an investment scheme
with universal properties if the price relatives are restricted to
a finite set. Larson [14] shows that variants of the investment
scheme suggested by the compound Bayes technique have

" exponential growth rates arbitrarily close (but not equal) to that

of the best constant rebalanced portfolio. Unlike the present
setting, the price relatives are assumed to take on values
in a finite set. The p-weighted universal portfolio with side
information considered in this paper is a generalization of the
universal portfolio proposed originally by Cover [15].

Cover [15] bounds the ratio of wealths achieved by the best
constant rebalanced portfolio (no side information) and the
universal portfolio in terms of a sensitivity matrix depending
on the texture of the stock sequence. The analysis in [15]
uses Laplace’s method of integration and assumes that the
price relatives are bounded away from zero and bounded from
above. This is in contrast to the present paper which obtains
individual sequence, worst case bounds that are independent
of the stock vectors £ and side-information states y™. No
assumptions on the stock vectors are required.

The paper is organized as follows. Section II formally
establishes the investment setup and notation, and defines the
state-constant rebalanced portfolios. The p-weighted universal
portfolio with side information is defined in Section III.
Section IV contains the main theorems establishing the per-
formance bounds on the proposed universal portfolio strategy,
and Section V presents a simple example illustrating these
results. In addition, Subsections IV-A and IV-B illuminate
the connection between the present results and universal data
compression. Finally, Section VI provides an efficient method

-for the exact computation of the universal portfolio.

II. PRELIMINARIES

As stated above we will be concerned with investment
opportunities in a market consisting of m stocks. A vector
of price relatives £ = (21,%2, -+, %m)" (With z; > 0,5 =
L,---,m or £ € RT) expresses the change in the prices of
these stocks over one investment period. The jth entry ; of
x is simply the ratio of the final to the initial price of the jth
stock for the given trading period. Thus an investment in stock
Jj increases by a factor of z; over that period. We refer to the
vectors of price relatives as stock vectors.

An investment in the market of m stocks is specified at
the beginning of each trading period by a portfolio vector
b= (b1,b2, <+ ,bm)" € B, where

B=(SbeR™ Y bj=1,b;>0). )

i=1
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The jth entry 'b of a portfolio b is the proportion of wealth
invested in the ]th stock. An investment using a portfoho b
increases one’s wealth by a factor of

m
bt:l,' = Z b]‘ Zj (2)
g=1
if the market performance is specified by the stock vector
" x. Further, for a sequence of n investment periods, investing
according to portfolios b; for periods 7 = 1,---,n increases
the initial wealth by a factor of ‘
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A sequence of portfolio choices b; constitutes an investment
strategy or algorithm.

To clarify, note that the well-known Kelly gambling prob-
lem [1] can be expressed as a special case of the general
investment setup as shown in [6, chs. 6 and 15]. In Kelly
gambling one must place bets on the outcome of an m-
valued event, such as the winner of a race with m horses.
If the event takes on the value j (i.e., horse j wins) the
gambler receives bjo;, where b; is the proportion of wealth
bet on horse j and o; is the payoff for the jth horse. In
the market terminology above, Kelly gambling corresponds
to a market with m securities in which the price relatives
are restricted to be one of m vectors where the jth vector is
o; in the jth component and zero in all others. The portfolio
b= (b1,b2,---,by,) in this case denotes the fraction of wealth
bet on each of the possible outcomes of the event.

A. Constant Rebalanced Portfolios

We restrict the set of actions or portfolio choices to the
state-constant rebalanced portfolios. These are derived from
the constant rebalanced portfolios, which we now describe. A
constant rebalanced portfolio strategy uses the same portfolio b
for each trading period. For a sequence of stock vectors ™ =
(%1,---,%n) the constant rebalanced portfolio strategy using
portfolio b achieves wealth S, (b, ™) (which we sometimes
abbreviate as S, (b)) given by »

Sn(b,z™) = S, (b) =

ﬁ bz, )
=1

Note that S,,(b,z") depends on the sequence ™ only up to
permutation. Also note that a constant rebalanced portfolio
strategy actually involves a great deal of trading. This is
because at the end of a particular trading period, say the ith, the
proportion of wealth invested in each stock has changed from

bi, -y bm 10 Zirhy /(6°%;), - - Timmby /(B'2;) and therefore
stocks must be bought and sold to restore the proportions of
wealth to by, -, by, for the next trading period. :

For a sequence of stock vectors ™ we can determine the

" best constant rebalanced portfolio as the one ‘achieving the

maximum wealth. We denote this portfolio by b*(z™) or just
b" and it is given by

b (") =b" = S (B). 6
(") | arg max 5, (b) (6)
We use S7;(z™), or simply S%, to denote the maximum

= Iileag( Sn(b). (7

Sa(z") =

Thus the best constant rebalanced portfolio strategy uses

portfolio " and achieves a wealth of S*. We will also refer
to the quantity
*7, M ‘1 ¥/, m .

as the exponéntial growth rate of wealth for the best constant

rebalanced portfolio.
It is important to note that both' S% and b* depend on

“the entire sequence =™ and n since they result from a max-

imization for that particular sequence. Thus even if the set
of investment actions is limited to the constant rebalanced
portfolios, knowledge of the entire sequence z" and n is
required to determine the best action in this set.

B. Side Information

Investors use various sources of side information to adjust -
and update their portfolios. We model this side information as
a finite-valued variable y made available at the start of each
investment period. The portfolio choice can then incorporate
knowledge of y for that period. Thus the formal domain of
our market model is a sequence of pairs {(x;,y;)} where, as
defined above, z; is the stock vector for period ¢ and y; €
Y = {1,2,---,k} denotes the state of the side information
at time .

The side information can arise in numerous ways. For
example, sophisticated trading strategies often develop sig-
naling algorithms that indicate the nature of the investment
opportunity about to be faced. The signal would constitute the
side information. An example of a signaling algorithm is: set
y; = j if stock j has outperformed other stocks in the previous
r trading days. Another signaling algorithm might use y; to
reflect whether the moving average of the last r trading days
is greater or less than the average of the price relatives on the
previous trading day. These examples involve side information
that is a causal function of past market performance.

In our model, however, y; could depend: on the entire
sequence i, - - -, Z,, and could, for example, identify the best
stock on trading day 4. This is a maximally informative side-
information sequence, since it would allow the investor to
invest in the best stock each day, resulting in astronomical
profits. The challenge is that the significance or value of
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such side information is not apparent to an investor with
only sequential knowledge of the stock vector and side-
information sequences. This must be “learned.” However,
since the sequences are arbitrary, there is nothing that can
be learned in the usual sense about the continuation of the
sequence.

C. State-Constant Rebalanced Portfolios

The constant rebalanced portfolio discussed above is ex-
tended to the state-constant rebalanced portfolio by allowing

the portfolio decisions to vary with the side information’

y. A state-constant rebalanced portfolio specifies portfolios
b(1),b(2),---,b(k) € B, and uses portfolio b(y;) at time 4
when the side-information state takes on value y; € Y =
{1,2,-.-,k}. The choice of b: Y — B results in wealth

- S (b(-), z"|y") = H b (y;)z; ©)

on the stock sequence z" and side information y™. The
collection of state-constant rebalanced portfolios with k states
will be denoted by B* (the k-wise Cartesian product of the
portfolio simplex B).

As above, for a sequence of stock vectors z" and side-
information states y™ we can determine the best state-constant
rebalanced portfolio as the one achieving the maximum wealth.
We denote this portfolio by b"(-), where

b () = Sn(b(-), ™|y 10

() arg, max, (6(-),="|y™) (10)
and the maximum is over all portfolio assignments b: J — B.
Let

Sal@"ly") = max, Sa(b(),

z"|y") an
denote the maximum wealth. Thus the best state-constant
rebalanced portfolio strategy uses portfolio b*(-) and achieves
a wealth of S} (x"|y™). The exponential growth rate of wealth
achieved by the best state-constant rebalanced portfolio at time
n is
* n 1 *

Wa(a"y™) = ~log S;(2"[y"). (12)
Again, S} (z"|y") and b*(-) depend on the entire market
sequence ™ and side-information sequence y™, but only up
to permutation.

The number of degrees of freedom (dimensions) in a state-
constant rebalanced portfolio will be useful in characterizing
the subsequent results. A state-constant rebalanced portfolio
for k states and m stocks has k(m — 1) degrees of freedom;
m — 1 degrees of freedom for each of the k£ portfolios which
must be specified. The requirement that the entries sum to one
gives each portfolio vector m — 1 degrees of freedom, rather
than m, where m is the number of stocks.

D. Sequential Investment

A sequential portfolio with side information is one which
chooses b;, the portfolio to use at time 7, based only on past
(prior to time 7) stock vectors and past and current (up through

time i) side information: Thus the portfolio used at time ¢ is
given by a function of the form
) y’b)

b, =bi(z1,%2, -+, Fi1, Y1, Y2,

=bi(z*,y") (13)
where z°~! gives the past stock performance and y¢ is the past
and current side information. A sequence of such investments
achieves a wealth at time n of

Sua"ly") = [[ bi@" 1 )z (14)
=1
and an exponentialv growth rate of
1
Wa(z™y") = o log Sn (=" [y"). (15)

We say a sequential portfolio with side information is universal
for the collection B* of state-constant rebalanced portfolios if

Sp(="y™)
li = 1 ey e
n—l—>nc>lo :nui) 08 S, (a;nlyn)

= lim sup (Wi (z"y" )

n—o0 tn

=0.

Wn(z"[y"))
(16)

In other words, a sequential investment algorithm with side
information is universal for the collection of state-constant -
rebalanced portfolios if it has the same asymptotic exponential
growth rate of wealth as the best portfolio in B* for any stock
vector sequence £" and any side-information sequence y™ as
n — o0.

E. Problem Statement

The problem, then, is to exhibit a sequential investment
algorithm which is universal for the collection of state-constant
rebalanced portfolios. Instead of making distributional assump-
tions on the stock vectors and seeking to optimize performance
with respect to the true underlying distribution, we restrict
the set of investment actions to the state-constant rebalanced
portfolios and seek to perform as well as the best action in
this set uniformly for all stock vector and side-information
sequences.

III. UNIVERSAL PORTFOLIOS

It may seem unlikely that we could find a sequential
portfolio which would be effective against arbitrary sequences,
because one might ask what can be learned from the past
of a sequence when the remainder of the sequence can be
completely arbitrary? Is it not possible that a sequence can
be designed to fool any sequential portfolio into investing in
precisely those stocks that will do worst at each time? Of
course this can be done, but the interesting fact is that, with
proper care in choosing the sequential portfolio b;: (RT):=1 x
V' — B, one can still achieve S;;(z™|y™) to first order in the
exponent, uniformly in " and y".

Toward this end we define the u-weighted universal port-
folio b; with side information as follows. First, as in the
preliminary section, we treat the case of no side information
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or |Y| = 1. In this case, the u-weighted universal portfolio
with side information will be referred to simply as the the
p-weighted universal portfolio.

Definition 1 (Universal Portfolio): The p-weighted univer-
sal portfolio at time ¢ is specified by

/ bS: 1 (b, 21 dyu(b)

by =bi(z""!) = i=1,2,
/sl (b, 1) du(B)
(1)
with
/ du(b) = 1 (18)
B
and where, as defined above
Si(b,z*) = Si(b) = [[ b'z; and Sy(b,2°) =
j=1
(19

Note that if p is symmetric, then

3
31:<i7~1_7“.’i). 20
m’'m m

The overall portfolio algorithm is specified by the choice of y,
while the portfolio action at each time depends on i and the
sequence z'~! observed so far. Later we focus on two pos-
sibilities for the measure y; the uniform (Dirichlet (1,---,1))
and the Dirichlet (1/2,.--,1/2) distributions on the portfolio
simplex B. The Dirichlet (1/2,1/2,---,1/2) distribution has
a density with respect to Lebesgue (uniform) measure on the
simplex B given by

dyu(b) = —F<—?>—m ﬁ b7 b 1)
()]~

where I'(-) denotes the Gamma function. Section VI illus-
trates an efficient method for the exact computation of the
universal portfoho as specified by (17) for p equal to the
Dirichlet (1/2,---,1/2) distribution.

The - Welghted universal portfolio achieves a wealth of

n
At ,
= [[b:(z" )z (22)
i=1
It is convenient that S’n( ™) can be calculated directly

(rather than by calculating each b; and the resulting product
Iz b zz) by using the telescoping of the product

Sula™) = ﬁ (/ b'5i1(0) du(b))zz-

[ 5:®) duce

———— (23)
/ Si—1(8) dp(b)

to obtain
:/Sn(b,z”) du(ﬁ). (24)
B

For convenience, we will sometimes refer to the p-weighted
universal portfolio as simply the universal portfolio, w1th the
role of p implied.

The p-weighted universal portfolio with side information
for |Y| = k> 1 is defined similarly, by using a fresh universal
portfolio on each subsequence of (%1, %, - - -, Tn) correspond-
ing to the times at which the side information y; takes on a
given value in Y.

Definition 2 (Universal Portfolio with Side Information):
The u-weighted universal portfolio with side information is
specified by

/ bS:_1(bly) dyu(b)
/ Si-1(bly) du(®)

bi(y) = i=1,2,

(25)

where
/ dﬂ(b) =1 . (26)
B -

and S;(b|y) is the wealth obtained by the constant rebalanced

portfolio b along the subsequence {j < i: y;. = y}, and is

given by
Sibly)= [ b=y, with So(Bly) = 1. (27)

JSuy;=y

For stock vector and side-information sequences z" and 4™
the resulting wealth is

S (2"™y™) H (ys) 23 8)

Again taking advantage of telescoping products along each
subsequence {i: y; = y}, the wealth can be expressed more
compactly as

‘gn(mnly

=11 /B Su(bly) du(b). (29)

As above, the corresponding exponential growth rate of wealth
is
ni, n 1 & 7, ;
Wa(z"[y") = —log Sa(a"|y"). (30)
Our goal now is to show that there exist u for whigh the
p-weighted universal portfolio with side information b(-) is

universal for the state-constant rebalanced portfolios B in the
sense stated above; namely, that

S y")

s 1
lim sup —log —
Sn(2"|y")

n—oo
sy T

=0. 3D
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We accomplish this for y equal to the uniform and the
Dirichlet (1/2, - - -, 1/2) distributions by proving the following
results. For 4 equal to the uniform distribution we show that

1 S* (™ |y . mtm N n
sup ~10g 2 W) gy, (s ly) - Waanly™)
znyn N Su(z™|y™)  =ryr
< ﬂm_n—_l) log (n + 1) (32)

and for the Dirichlet (1/2,---,1/2) distribution that

1Sl ~
sup — log =—=+ = sup (W, (z"|y") — Wa(z"|y"
. 085 @y mn’yn( (="y"™) (="[y™))
: k(m -1
< %llog(n+l)+§log2.

(33)

Both bounds tend to 0 as n — oo, thereby demonstrating uni-
versality for these p4’s. Furthermore, these bounds are shown to
be essentially tight, indicating that the Dirichlet (1/2,---,1/2)
weighting gives a somewhat better worst case performance
than the uniform weighting. These results are proved in
Section IV.

Combining Expert Opinion

Suppose there are m' experts, each with a portfolio selection
scheme. Let b] denote the portfolio recommendation of the rth
expert on day 4, where ¢ = 1,2,-+- n,and r = 1,2,---,m/.
Is there a sequential investment scheme which incorporates the
experts’ recommendations and achieves the same exponential
growth rate of wealth as the best expert uniformly for all
market sequences? This is easily done. Simply allocate wealth
1/m/ per expert and invest each fraction of wealth according
to each expert’s sequence of portfolio selections. If S is the
wealth factor achieved by the rth expert’s strategy, the wealth
accrued by this simple scheme will be '

’

3

8, = (1/m')

T

i)
1

Il

which, of course, is at least (1/m’) max, ST for every
sequence 1, Tz, - - - . Since this is equal to max, S,(f) to first
order in the exponent, this simple scheme is universal for the
collection of 7 expert strategies. The overall portfolio b; used
by this investment strategy at time ¢ is easily seen to be

’
m

PREHAL

3 _r=1

;= (€LY

m’

350,

r=1

Thus the portfolio choice at time 4 is a performance weighted
average of the portfolio choices of the m’ experts. This is

very similar to the universal portfolio definition (17), where
the portfolio choice at each time is a performance weighted
(continuous) average of the constant rebalanced portfolios. In
fact, the goal of universally tracking the best state-constant
rebalanced portfolio can be thought of as performing as well
as the best in a continuum of expert investors indexed by the
portfolios in the simplex.

It is interesting to note that for the problem of tracking a
finite number of investment strategies or experts, a somewhat
more aggressive use of expert opinion can be obtained at the
cost of an increase in the number of degrees of freedom. The
market vector at time % is &; = (21, -, Tim). Form the
augmented vector &; = (zi,bgl)twi, e ,bgml)xi). This vector
has m +m’ components. Now apply the universal portfolio to
the sequence &1, £, - - - , &, of augmented vectors. As claimed
above, this portfolio will perform as well as the best constant
rebalanced portfolio in the primary stocks z; through z,,
and in the m/ “stocks” btz r = 1,2,... m’, associated
with the investors. This is like investing in m stocks and
mn/ mutual funds. Since the best constant rebalanced portfolio
usually strictly outperforms any of the constituent stocks, this
portfolio exponentially outperforms the experts as well as the
constituent stocks. That is, expert opinion is valuable not only

- because one can ride along with the expert, but becaus¢ one

can rebalance among experts and the constituent stocks to take
advantage of expert opinion and outperform all.

IV. MAIN THEOREMS: UNIFORM BOUNDS

We now prove the performance bounds ((32) and (33)) on
the p-weighted universal portfolio with side information for
equal to the uniform and Dirichlet (1/2, - -+, 1/2) distributions.
These results are contained in the following theorems. The first
two theorems focus on the no side-information case or k¥ = 1
case and the third generalizes the bounds to k > 1. Recall that
S,(z™) is the wealth achieved by the universal portfolio on
the sequence £™, and S} (z") is the wealth achieved by the
best constant rebalanced portfolio. Also recall S, (z"|y™) and
S (x™|y™) as the analogous quantities with side information.
Throughout, m is the number of stocks.

Theorem 1: For p equal to the uniform distribution,

Sal=") o (“*m‘ 1) < (n+ )

< 35
Gz \ m—1 (35)

for all n and for all stock price relative sequences z".
Theorem 2: For p equal to the Dirichlet (1/2,---,1/2)

1 m
r(z)r(n+%)

Sa(a") _ (2) "

gn(xn) B (T)F l

r 5 n + 5

for all » and for all stock price relative sequences z™.

The theorems say that for any z™ the wealth acquired by
the uniform weighted and Dirichlet (1/2,---,1/2) weighted
universal portfolios is within a polynomial factor of the wealth

S%(z™) acquired by the best scheme in B (the best constant
rebalanced portfolio).

<2(n+1)mD/2 0 (36)




354 ’ i IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

The next theorem extends the bounds of Theorems 1 and
2 to the general side-information setting. The quantity n..(y™)
denotes the number of times y; = r in the sequence y™

n

=1

n(y") = G7

where I(-) is the indicator function.
Theorem 3: The uniform weighted universal portfolio with
side information satisfies

B “|y < H(nr

_|_1)(m 1) < (n+1)k(m 1)
S :1:”|y st

(38
for all n,z" € (R7)™,y" € {1,2,---,k}™.

Similarly, the Dirichlet(1/2,---,1/2) weighted universal
portfolio with side information satisfies

Su(z"y™)
Sn(zrlyn) ~

AN

k
2 TLnay) + 1)/

< 2F(n 4 1)k(m—1)/2 (39)
for all n,z™ € (RT)™,y"™ € {1,2,---, k}™
This theorem immediately implies that
1 S* 7 T
lim sup ~log 2n&" W) _ (40)

n=—00 g yn M S’n ($n|yn)
thereby proving that for these two u’s the universal portfolio
with side information is universal for the collection of state-
constant rebalanced portfolios. Equations (32) and (33) follow
from (38) and (39) by taking logarithms and normalizing by n.

The proofs of the theorems rely on the following lemmas.
In both lemmas we adopt the conventions that a/0 = oo if
a>0, and that 0/0 = 0.

Lemma I: If ay, -+, > 0,08, --

n
D
i=1

7ﬂn > 0, then

=L < max % (41)
J .
> b '
i=1
Proof of Lemma 1: Let
J = arg max C—I—j-. 42)

7 7

The lemma is trivially true if a; = 0 since both the left and
right side of (41) are zero. So assume a7 > 0. Then, if 8y = 0,
the lemma is true since the right side of (41) is infinity. So
assume both ay >0 and B; > 0. Then

Za] oy 1+Eaa;

TS @y
Z ﬁf 1+3 2L
i=1 g ; By

because
ay g .
<2t (44)
Bi ~ Bs
which implies
% < B 45)
ay T By
for all j. O
Lemma 2: For the y-weighted universal portfolio
S* (I") H gl
—— (46)
S.( .1:")

/ H bj, dp(b)

where the maximum is over the set of sequences of indices
g e{1,---,m}™ and b* = (b3, --,b%,)* is the best constant
rebalanced portfolio for the sequence z™.

Proof of Lemma 2: First recall the definitions

n

Si(a™) = [ o**= @7
=1
and
S (z") = / 118"z du). (48)
Bi=1
Rewrite S} (z") as
(@) = [[ 6"
i=1
=11 > b
i=1 \ j=1
= > v (49)
ire{l,,m}n i=1
where ;™ = (j1,72,--,4n) € {1,:--,m}", and we have

rewritten the product of sums as a sum of products. Similarly
rewrite S, (z") as

S (z") = / Hbtmi du(b)

-z / Hbﬁzm du(b).  (50)
ne{l
The ratio of wealths can therefore be written as
. n
k Z H b;ixiji
S* n . n e )
| ;Ew ; - (51
. " .
! Z /H bj. iz, du(b)
"G{l m}n
> 4
_ G @iy, >0 i=1" ' 52)

> / H by, du(b)

gl x5, >0



COVER AND ORDENTLICH: UNIVERSAL PORTFOLIOS WITH SIDE INFORMATION ) 355

Now apply Lemma 1 with

Qjny = H b Tij
and
Bum = / fll bj.wij, dp(b)
for
"e {j": ﬁ miji>0}
i=1
to obtain

n
«
H b3, g

gn(zn) < - max o nz 1 (53)
n(l' ) id; /H b] zij, du,(b)
=1
115
= max —T?L——— (54)
i i= 71
- / I bs. du®
=1
n
I1%,
< =1 -
< (55)

max ——n—-——~
/ H b;, du(b)

where (54) follows since the product of the z;;,’s factors out
of numerator and denominator. ‘ O
Theorems 1 and 2 are now proved by upper-bounding the
ratio (46) in Lemma 2 for the two u’s in question.
Proof of Theorem I: Lemma 2 gives

- Sa@) o g“ ‘

max

&WV"W/Hmwm
=1

For r € {1,---,m}, let n,.(j") be the number of occurrences
of 7 in j™. Thus the numbers (n1(j™)/n, -, nm(j™)/n) de-
note the type of the sequence ;5. Letting v,.(j) = n,(j")/n,
from [6, p. 281] for any sequence ;" and any b

(56)

ﬁb]}- < 9~ nH (@1 (") wm (™)) (57
where
HO1(G™), - om(7) = 3 =0 0857,
r=1
Equality is achieved by
b= ("), vm(3™)" (58)

Further, for p equal to the uniform distribution

J 11 b auw
=1

can be evaluated in closed form as

= 1
[ TTbs du) =
! +m -1 . .

=1 : (n mTl ) T(yl(]"),--~,um(]”))

(59)

where T(v1(5™), -+, V(™)) is the number of sequences of

type (11(§™), <, vm(5™)) and ("}"71) is the number of
S vm(3™))

types. It is well known [6], [16] that T'(v1(j"),

is at most 2nH@1("),wm (™)) Therefore

In+m—1\

(60)
Combining (56), (57), and (60) shows that
11%,
S*(a:") =
n(z ) /H b, du(b
9= nH @1 (™) (5™)
< max 1
v - 9-nH@i(G™),vm (™))
n+m-—1
m—1
=(";T;1) 61)

proving the first inequality in the theorem. The second inequal-

) s

ity follows from the fact that the number of types (
bounded from above by (n + 1)™~ L.

Proof of Theorem 2: Again Lemma 2 gives

1%,

= 62)

/ I;I bj; dyu(b)

As above, bound the numerator using

= < max
i

n
Hb;‘,’/ < 2—nH(V1(j"),~",Vm(fn))_ (63)
=1

Now for x equal to the Dirichlet (1/2,-- -,

/ }j[l bj, du(b)

1/2) distribution
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can also be evaluated in closed form as

r(3) (04 5)
eyt Ol

Let D(n1(4™), -+, nm(j™)) denote this quantity.
Lemma 5, proved at the end of this section, states that

64

/ ]j bj, du(b) =

9= H (11 (™), vm (57))
D(ni(j™), -, nm(5™))

1 m
= 1
m
r(™)r ( 4 5)
for all 5 and all n. (The asymptotic behavior of this ratio is

analyzed in [17] and other works on universal data compres-
sion, where there is less emphasis on obtaining bounds valid

< 2(n+1)mD/2 (65)

for all n.)
Recapping
I1%.
S;*L(:l:”) =l
S, (z
/H bj, d#(b)
< o=nH (v (§"), - wm(3™))
max T B
- g D(nl(j )"'7nm(.7n))

< 2(n4+1)D/2 ] (66)

O
The proof of Theorem 3 relies on the expression for the
wealth achieved by the p-weighted universal portfolio with
side information given originally in (29)

(67)

(@"ly") H/ (blr) dp(b)

where the quantity

/ammw@
B

is the wealth acquired by an ordinary universal portfolio
operating on the subsequence of z™ corresponding to the
times ¢ that y; = r. This equation expresses the fact that
the universal portfolio is extended to the universal portfoho
with side information by dividing the sequence =1, zs, - - -, ,,
into % subsequences indexed by the side-information states
¥i € {1,2,---,k} and freating each subsequence as a separate
universal portfolio problem.

(68)

Proof of Theorem 3: The theorem follows readily from
Theorems 1 and 2 and the expression for the running wealth
achieved by the pu-weighted universal portfolio with side
information as given by (67). Specifically

k

Sn(="ly") _ Sn(b7|r)
T B — (69)
Sn(a"ly) ~/56|wm
H S* {xl Yi = T}) (70)

S {ziyi =r})

where Si({zi: y; = r}) and S, ({z;: y; = r}) respectively
denote the wealth factors achieved by the best constant re-
balanced portfolio and the universal portfolio restricted to the
subsequence of stock vectors {z;: y; = r}. For i equal to the
uniform distribution, Theorem 1 shows that

Sp({z: v = 7'})

. 1)(m=1) 71
S (ze = 1) (n(y)+) 1)
so that
Sa(@ly") _ 1 Salims g =1}) .
3.l g (o v =) “
k
H (™) + 1) (73)

proving the first inequality in the theorem for this case. The
second inequality follows since n,(y™) < n for each 7.

A similar application of Theorem 2 to each subsequence
proves the theorem for 1 equal to the Dirichlet (1/2,---,1/2)
distribution. O

Now we prove Lemma 5 used in the proof of Theorem
2. First we need to develop some properties of the Gamma
function.

Lemma 3: For x > 0

Iz +1) < (z+ 1)Y’T(z + 1), (74)
Proof: From the log convexity of I'(z) [18] we have,
forz > 0

De+1)=T(3(z+3)+ Lz +1) (75)
ST+ T+ INY2 76
=(z+ VI (z + 1). (77)

g
Lemma 4: Under the constraint that the z; are nonnegative
integers summing to n, the function

m L%
(@1, am) = || =———= (78)
: TI;J::[ Nz, + 5)
is maximized by setting £ = n, and xp =23 = --- = z,,, =

0.
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Proof: Tt suffices to prove for r # s and z,, > ;> 0 that

¢($la"'73"7‘7"'7x8)"'7mm),
¢($1,~",.'IZT+].,"'7.’IZS—1,"'7.’)3,,;1)
9(zr) _g(zs)
9(zr +1) g(zs—1) @
<1 (80)
where

z® ‘

g(z) = T+l Iy (31)

The symmetry of ¢ and repeated applications of (80) to pairs
of nonzero z, and z, lead to the desired result.
The proof of (80) amounts to showing that

g(n) __g(m) f(n)

= 82
gn+1) gm—1)  J(m 1) ®2
<1 (83)
for all integers n > m — 1 > 0, where
__g(z)
f(z) = JEt D) (84)
B z* Iz + %)
T @+ 1) T+ 1) ®)
- _L( + 1 86)
=G0 stz (

Equation (86) follows from the identity I'(z + 1) = zI'(z).
Since f(n)/f(m — 1) = 1 for n = m — 1, it suffices to
show that f(z) is decreasing for z > 0. This follows from

dlog f(z) d ’
o =i logz — (z + 1)log (z + 1)
1
+ log (m + 5)) 87)
=logz —1 1 88
gz 0g(l’+)+x+% (88)
1 AR
= - —-d 89) -
P! /z y Y (89)
1 1
- 90
“r4+i o+l
/ ydy
_ 1 _ 1 1 1)
Tty T+3
=0 (92)

where (90) follows from Jensen’s inequality applied to the con-
vex function 1/y. Thus f(z) is decreasing thereby implying
(83). This completes the proof of the lemma. a

The proof actually demonstrates a stronger result since
relation (80) implies that

- m

¢($ 7...’xm): __ﬁ_ (93)
! T_l:[lf(azr—}-%)

is Schur convex [19] over the integers. The theory of majoriza-
tion then implies that it is maximized by assigning =, = n for

some r and letting z, = 0 for the other indices s # r. (An
alternative derivation of the fact that ¢ is maximized by this
choice of z, is given by Csiszér [20].)

This brings us to the main lemma justifying (65) in the
proof of Theorem 2.

Lemma 5: For all nonnegative integers n1,- -+, Nm
m
> n=n
r=1

<N 20 <on+ 1)/ (04
c(@y(ard)
2 2
where, as above, v, = n,/n.

Proof: We proceed to bound the ratio (94) as follows:

2—nH(V1,~~,um)

: 1
r(3) f0rs)
F(n + %) r=1 P(—;—)
(G) D
= I‘(%) nn rl__:IlF(nrJr%) 95)
() )
I‘(%) oo $(n1,-- ) (96)
where, as in Lemma 4,
¢($1,‘~,wm)=£[lﬁ;’—;%—). ©7)

Lemma 4 states that ¢ is maximized by setting 1 = n,z2 =
0,+,Zy, = 0. This results in

2—nH(v1,~~,vm)

<o)

(98)
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99)
1 m :
i r(j)r(mr i) o0
F("2‘>F("+5>
) 1o [Bln) vp
e 1 e
(101)
( F(%) (m~1)/2( m )
n+ ——1), form odd (102)
iz H
- P(ﬁ) T(n +1)
(3 (o)
(m/2)-1 m
k g (n—i—;—z), for m even (103)

where (101) follows from repeated applications of the identity
I'(z + 1) = 2I'(z). Note that (100) yields the first inequality
in the lemma statement. To further simplify this expression for
the case of m even, note that Lemma 3 implies

D(n+1)/T(n+1/2) < (n+1/2)Y/2

yielding the final bound

(n+ﬂ-i>, for m odd

IA

(104)

for m even

( (m-1)/2

for m odd

(105)

for m even

=1
( (mﬁ)/z (n +m/2 — i)

. ’
=1 m/2_'l

_ 1 1\ /2
-17(z)(»+3)
(m/2)-1 (n+m/j2—1)

H mf2—1

\ =1

for m odd -

(106)

, for m even

<2n+1)™D/2 foralln (107)

where (106) follows from the expansion of I'(m/2) for each
case, and (107) follows from I'(1/2) = /7 < 2 and the fact
that the 5th factor in each product in (106) is less than (n+ 1),
with the exception of one factor in the odd case which is less
than 2(n + 1), and hence the factor of 2. - O

A. Universal Data Compression

The logarithm of the upper bound on Si(z™)/S,(z")
obtained in Lemma 2 :

11%;

max log — =t

’ / le bj, du(b)

(108)

is a well-studied quantity in the universal data compression
of ii.d. sources. The significance of this ratio in the con-
text of universal data compression becomes apparent if the
components of a portfolio b = (by,--+,b,,) are viewed as
probabilities on the stock indices j € {1, --,m}. The quantity
17—, b}, is then simply the probability of the index sequence
J™ € {1,---,m}", if the indices are assumed independent and
identically distributed according to b*. The quantity

/ ﬁ bj, du(b)

can also be viewed as the probability of § under a distribution
which is a mixture according to p of all the i.i.d. distributions.
The logarithms of these two probabilities are, to within one
bit, the codeword lengths assigned to j™ by the Shannon
codes for the two distributions. We refer to the Shannon code
for the b* ii.d. distribution as the b* ii.d. code, and to the
Shannon code for the mixture distribution as the p mixture
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code. Thus the logarithm of the ratio in Lemma 2 is the worst
case redundancy of the p mixture code with respect to the
b* ii.d. code; worst case over sequences ;. The remarkable
fact about the u mixture code for p equal to the uniform
and Dirichlet (1/2, - - -, 1/2) distributions is that the worst case
redundancies are upper-bounded precisely by the logarithms of
the bounds in Theorem 1 and Theorem 2, respectively. Further,
these bounds are completely independent of b*. The proofs of
Theorems 1 and 2 subsequent to Lemma 2 reargue this fact.

The importance of the y mixture codes in universal data
compression is thus apparent; for y equal to the uniform and
the Dirichlet (1/2,--,1/2) distributions, the corresponding
Shannon codes are pointwise universal for ii.d. sources.
This strong notion of universality means that for any i.i.d.
source over m symbols and sufficiently large n, the encoding
of any block of n source symbols according to a mixture
code requires essentially no more bits per source symbol
than encoding according to the Shannon code tailored to
the underlying product distribution. This is stronger than
requiring the expected redundancy (according to the under-
lying distribution) to be small. Another useful property of
the mixture distributions: is that they form a stochastically
consistent sequence of distributions with increasing n. That
is, for each p there exists a stochastic process over source
symbols with the marginal distribution on the first n symbols
equal to the corresponding nth-order mixture distribution.
This means that the above universal coding performance can
be attained sequentially (as opposed to block-wise) using
arithmetic coding according to the conditional distributions
induced by the stochastic process [21].

It is the distribution-independent worst case redundancy
result from universal data compression that enables us to
obtain market-independent bounds on the relative performance
of the universal portfolio and the best constant rebalanced
portfolio. Theorems 1 and 2 are obtained by reducing (via
Lemma 2) the original investment problem to a well-known
problem involving the redundancies of mixture codes for i.i.d.
sequences of stock indices.

B. Discussion

Examining the steps of the proof reveals that the bound
in Lemma 2 holds with equality for Kelly gambling markets
where the z; are nonzero in only one component. Furthermore,
it is known from universal data compression theory that the
bounds on the expression in Lemma 2 given in Theorems 1
and 2 are also essentially tight. This confirms our intuition that
a Kelly-type market represents the least favorable investment
environment, in the sense that the bounds on worst case per-
formance are achieved. It is also apparent that the u-weighted
universal portfolio with 4 equal to the Dirichlet (1/2,--+,1/2)
distribution has a somewhat better worst case performance
than p equal to the uniform distribution.

The proof of Lemma 2 reveals another interpretation of the
constant rebalanced portfolio and of the universal portfolio.
Fix a time horizon n. For each sequence of stock indices 7™ €
{1,---,m}™, consider the strategy which invests all wealth at
time 7 in stock j;. We will call these the extremal strategies
indexed by j™. The constant rebalanced portfolio strategy

with portfolio b = (by,---,bn,)" now has the following
interpretation. Divide the initial wealth into m™ piles indexed
by j = (41,72, *, Jn), Where the fraction of wealth in pile
™ = (41,59, *,Jn) is II7—y bj,. Use the money in pile
4™ to implement the extremal strategy corresponding to the
sequence ;™. The plunging (extremal) strategy corresponding
to the sequence j™ which invests an initial wealth of II7..; b;,,

- accrues a wealth factor of II7; x;; and therefore achieves

a final wealth of I, bjx;;,. It is easy to see that the
total wealth factor at any time [ < n achieved by these m™
strategies running in parallel is exactly equal to the wealth

l
]
bjiwis = [ [ bz
=1

of the constant rebalanced portfolio with portfolio b. The
universal portfolio can be interpreted similarly, but now the
fraction of initial wealth assigned to pile 5" is

/ ﬁ b, du(b).

=1

1

> 11

gt i=1

This interpretation gives rise to a collection of invest-
ment schemes corresponding to probability distributions
q(41,*+,Jn) on sequences of stock indices j™. The probability
q(j™) corresponds to the proportion of initial wealth assigned
to the pile for extremal strategy j™. The final wealth at time
n for such a strategy is

3 a™ [ #ise-
=1

i

(109)

A fixed time horizon is not fundamental to this interpretation.
Given a stochastic process on the stock indices with condi-
tional distributions ¢y (j5|jn—1, - -, j1) and initial distribution
q1(41), the following investment strategy achieves the wealth
given by (109) with

(™) = a(G1) [] @Gl 50)-

=2

At time 1, let by; = q1(¢) for ¢ € 1, -+, m. Define

-1
w(jl_l) = Hbijixiji. (1]0)
=1
Now for b, = (bj1,-*+, bim), use
> w(E Nl
jl—-l
b = (111

> wlit)

jl—l

This is essentially a performance weighted average of the
extremal strategics j¢~1 with initial wealth proportions of
q(5'=1). Refer to such an investment scheme as a g(-)-driven
investment scheme.

What kind of investment strategies arise from various
choices of g(-)? The most naturally motivated schemes we
have found in this family are the constant rebalanced portfolio,
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where ¢(-) is the measure induced by an i.i.d. process on the
stock indices, and the universal portfolio where g(-) is a
mixture of ii.d. distributions. It is interesting to consider
the scheme corresponding to g(-) given by the Lempel-Ziv
induced probabilities [5], [22]. This scheme would have
universal properties with respect to the collection of g(-)-
driven schemes with ¢(-) equal to any finite state (unifilar)
stochastic process on the stock indices. There are, however,
‘some motivational problems for this collection of schemes.
The problem is that for such a general scheme g(-), the only
naturally motivated stochastic process on price relatives for
which this scheme is growth-rate-optimal in the distributional
sense seems to be the Kelly market distributed according to
q(-). This is in contrast to the constant rebalanced portfolios
(corresponding to ¢(-) i.i.d. , and hence a subset of the above
collection) which are distributionally growth rate optimal for
1.i.d. distributions on price relatives (not just Kelly-type).

An important aspect of Theorem 3 is the absence of any
assumptions about the dependence between stock vectors and
side-information states. This dependence can be arbitrary and,
in fact, the side information can be a function of the entire
market sequence Zi,%z,---,Tn. An interesing example is if
y; indicates which stock will be the best performer on day s.
Of course, in this case, with knowledge of this dependence
the investor can take full advantage of the sequence y™ to
invest all wealth in the best stock each trading day. This
usually results in astronomically high performance, even for
the actual market. The problem is that the investor does
not know ahead of time how valuable this side-information
sequence is. Nonetheless, the p-weighted universal portfolio
with side information is able to learn the association cautiously
yet rapidly, and then perform as well, to first order in the
exponent, as if this dependence of y and = were known ahead
of time. The cost in the exponent, is (1/(2n)) log n per degree
of freedom (for the Dirichlet (1/2,- - -, 1/2) weighting). Since
there are k = m states of side information (mecessary for
indicating the best stock on each trading day), and there are
m — 1 degrees of freedom in the portfolio b € B, the loss in
- the exponential growth rate is (m(m —1)/(2n))logn. This is
asymptotically negligible as n — oo.

V. EXAMPLE

We present a simple example illustrating the above results.
Let a>1, and let

t t
= (La)ta (17 2) 3 (1>0’)t7 <17%> PR

be the sequence of stock market vectors. Note that the first
component z;; of the stock vector x; at time 4 is constantly
equal to 1 for ¢ = 1,2, .-, n. This first component represents
. a risk-free asset (or cash). An investment in the first stock
returns the investment—a dollar in is a dollar out. On the
other hand, the second stock x;; is highly volatile, jumping
up and down by a factor of a or 1/a each investment day. Both
stocks are going nowhere. A buy-and-hold strategy in stock 1
results in S,, = II z;; = 1; a buy-and-hold of stock 2 results in
Sp = z;2 = 1, when n is even. Also, this sequence has been

L1y &2y

maliciously chosen to perform contrary to naive expectation.
For example, whenever stock 2 has outperformed stock 1 in
the past, it plunges by a factor of 1/a.

Now consider the behavior of a constant rebalanced portfo-
lio b = (b,1 — b) on this sequence. Then, for n even

Su(®) = (b+ (1 - b)a)™/? (b+ Cl) ) (112)

Setting the derivative to 0, we find the maximum wealth 1is

achieved by rebalancing each time to

b= (1,1 | (113)

[SIE

?

M=

resulting in wealth

S(@™) = (V1 + )1+ 1/a)(1/9)"

forn =2,4,6,--- (neven). Since (1+a)(1+1/a)(1/4) > 1,
for a # 1, the wealth grows exponentially to infinity.
Now consider side information with |y | =.2 states:

i-1 i—1
L, [[ze< H Ty
=1 =1
1—1 2—1
2, [[zn> [JER
I=1 =1

(114)

Yi =

y1 =1.

Thus y; indicates whether the running price of stock 2 exceeds
stock 1 (cash) at time 4. The sequences look like this:

1\’ 1\*
z;: (17a)t7 (La) ’ (1,(1,)1‘) <1> E) 5
2

Yi: 1, 2, ].,

?

Note that this simple calculation based on the past yields
side information that gives perfect investment information. An
investor knowing (z™, y™) would make perfect investment de-
cisions, and hence the best state-constant rebalanced portfolio
is
bi(ys):  (0,1)% (1,0, (0,1)%, (1,0)°
S*($ Iy ) @, a, - a2, 0’27

By investing in the best stock each time, the wealth gained by
the best state-constant rebalanced portfolio is

<

Sr(z"|y™) = a"/? (115)

for n even. Of course this is. much larger than (114).

We now investigate the performance of the universal port-
folio on the same sequence. As-given by (29), for n even, the
universal portfolio with side information achieves a wealth of

Su(z" ™) = / 11 ¥z i

Ty =1

/ 11 b= du®)

1y, =2

(116)
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which, using results from Section VI for the Dirichlet

(1/2,---,1/2) distribution, we can express by
Sn(z™y"™) = / H b'z; du(b)
iy =1
/ I b= du)
1y =2

( / (0 af1 = )" du(h))

- (/ (b+2a-n)" du(b)) |
SE (e
( 1 E/: 21 251»/22_—;))@_«"/2)-:)

L)) (3 ()

Using Stirling’s approximation, we note, for purposes of
comparison, that

CIOALDICINS)
) (_73?75/2>( ;71‘/2>

2
=2

™

117)

(118)

A similar analysis is easily carried out for » odd. We see that
(118) and (115) agree to first order in the exponent. In fact,
Theorem 3 states that for any n the overall wealth factor for
the universal portfolio with side information is no smaller than

Svn(xn|yn) > n/2

.
i
1

= K_;?_l_—l)s:i(fﬂyn)-

(119)

Thus the target wealth of the best state-constant rebalanced

portfolio is attained to within a factor of 4(n/2 + 1). A

factor of 2/(n/2 + 1) arises from each of the subsequences
{i: y; = 1} and {3: y; = 2}.

VI. COMPUTING THE UNIVERSAL PORTFOLIO

This section presents a simple method for the exact compu-
tation of the p-weighted universal portfolio for 1 equal to the
Dirichlet (1/2,---,1/2) distribution. The idea is to compute
the universal portfolio recursively in a manner similar to the
recursive calculation of the binomial coefficients. We illustrate
this for the case of m = 2 stocks and |Y| = 1 (no side

information). The method generalizes easily to more stocks
and side information. )

As in the proof of Lemma 2, we begin by rewriting the
wealth accrued by a constant rebalanced portfolio

Sn(z",b) = [[ '
1=1

= H(blﬂm + bozi2)

=1
= Z H bjiwiji
jre{1,2)ni=1
Z ol 3 [z ] (200
1=0 G ET, (1) i=1
where T,(l) is the set of all sequences j" € {1,2}" with
I T'sand n —1 2’s. Letting
X (1) = Z me (121)
JrET, (1) =1
we have
Sn(z™,b) =Y eI X (D). (122)

1==0

Integrating this expression'yiclds the wealth accrued by the
universal portfolio at time n

Su(a") = / S 8BS0, (1) )

1=0
_ Z / B0 dpu(b)
=0
= ; X.(DCL(D), (123)
I=
where we have defined
Co(l) = / B 65 du(b). (124)

This integral, with y equal to the Dirichlet(1/2, 1/2) density,
can be evaluated in closed form to obtain

C (l):( "%>'(l"1—%)'“(%)~(n—l—%)...(%)
’ n-(n-1)-2-1
I(n — l)z<?ll) (2(:_—;))
B nl22n . (125)
We note for reference that, by Stirling’s formula
1
Cr(l) ~ (126)

[
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We can obtain an expression analogous to (123) for I;n, the
specified portfolio at time n. First recall that

b, =

) / H b'x:by du(b)

= .27

n— 1
(= / H btz;by dpu(b)

Now proceeding exactly as in the simplification of S, (™)
above we get

~n—1
> Xuna ) [ B d
| — 1 =0 L
" S ()| _
NS X [ 6 au)
_n_ll:O
| > Cu(l+ 1) Xn1(D)
= | (128)
n—l(z ) Z On(l)Xn*]_(l)
- I=0

The next step is to observe that the quantities C, () and X, (1)
can be computed recursively. Taking Cp(0) = 1 we have two
recursions for C, (1)

Call) = (l;—%)cn_l(z ~1)
C(l) = @Cn_l(l). (129)
For X, () we have the recursion
X)) = 2 X1 (U~ 1) + 2p2 Xn_1(]) (130)

valid for 1 <[ < n — 1, with the obvious endpoint conditions

Xn(O) = mnan_l(O)
Xp(n) =zp1Xn_1(n —1). (131)
We now have all the ingredients to compute the universal
portfolio expressions. Recursively compute and store the quan-
tities X,,(/) and C'(1) and then insert them into the above
expressions for S,(z™) and b,,.

We can further simplify the computation by noticing that

Sn(2") and by, depend on X,,(1) and Cn(1) only through their

product @Q,,(1)

Qn(l) = Xn(l)cn(l) (132)
In particular, we can write S’n(:(:") as
Sa(™) =" Qu(l). (133)

=0

We can also use the Qn(I) to express the quantities C,, (I +
1)Xn—1(l) and C,,(1)X,,—1 (1) appearing in the expression for

b,. This is given by

!
Cult+ DX = 220, ),
-1 .
Cn(l)anl(l):“*—(n 2)Qn (). (134
Therefore, b,, is given by
[+1
. ZLuQn (D)
by = —"—— [0 . (135)

] — £
Z Qn 1([) Z%Qn—l(w »

Thus it makes sense to compute only the Q,(!). This is advan-

tageous from a numerical standpoint as well since C,(I) and - -

Xn (1) are respectively exponentially decreasing and increasing
in n. Computation of the Q,(!) can also be done recursively
by combining the above recursions for X, () and C,(I). The
Q. (1) recursions are given by ‘

(t=3),

Qn(l) =zn1 n
(n—

(-1

-1
_ l)
+ ZTno 2 n—l(l) (136)

again valid for 1 <1 < n — 1, and the endpoint recursions
(n—3)

=)

Qn(o) =Tn2

Qn-1(0)

Qn(n) =Tn] Qn— l(n - 1) (137)

The initial condition is Q(0) = 1.

To summarize, we have written the two universal portfolio
expressions, S,(z") and by, in terms of the Qn(l). The
accrued wealth is given by

$ua™ =3 Qul) (138)
=0

and the portfolio at time n by

; ZU“ Qs
IA)n: ~ . (139)

S 1S E Lt RN

The exact computation of the two-stock universal portfolio at
time n thus simplifies to recursively computing and stering the
n+1 quantities J,, ({) and then substituting them into the above
two expressions. This method generalizes easily to m stocks,
with the storage requirements for the recursive computations
growing like ™1,
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VII. CONCLUSION

There are some practical considerations concerning the

universal portfolio with side information which we have not ‘

addressed. One such consideration is the question of trading
costs. Optimal investing in the presence of commissions is
poorly understood throughout finance and portfolio theory. For
example, it was pointed out that constant rebalanced portfolios
are growth-rate-optimal for i.i.d. markets. This is only valid
in the absence of trading costs and there is no general
solution to the growth-rate-optimal investment problem with
commissions. As for universal investment, it is not even clear
what that means in the presence of trading costs. Perhaps
the exponential growth rate of wealth of the best constant
rebalanced portfolio computed in hindsight is, in fact, not
achievable sequentially when trading costs must be taken into
account. .

Another practical consideration is the nature of side infor-
mation. In this paper we assumed that an abstract source of
side information is available for portfolio decision-making.
A challenging yet useful effort would be to isolate practical
sources of side information appropriate for real-world markets.
An important point to keep in mind in such an undertaking is
the dimensionality tradeoff evident in Theorem 3. Increasing
the number of states k of side information (and hence the
dimension d = k(m — 1)) increases S, (z"|y™), the wealth
achieved by the best state-constant rebalanced portfolio. This
is good. However, the factor by which the universal postfolio
underperforms this improved target wealth increases with k
roughly like (/m)*(™~1). This is bad and hence the di-
mensionality tradeoff. This tradeoff is also an issue in data
compression and prediction.

The main points of this paper are the extension of the
universal portfolio- to incorporate side information and the
derivation of worst case performance bounds for the universal
portfolio with side information. Theéorem 3 shows -that the
wealth achieved by the pi-weighted universal portfolio with
side information is within a polynomial factor of the wealth
achieved by the best state-constant rebalanced portfolio com-
puted in hindsight up through any time n and any sequence
of price relatives " and side information y™. This is an
individual sequence result in the sense that the polynomial
factor holds for every sequence and not just on the average
or in probability. v

The proof of this result establishes a connection between
universal investment and universal data compression, which
accounts for the —(d/(2n))} log n lower bound on the universal
portfolio’s exponential growth rate of wealth relative to the

" best achievable. The strongest bounds on the redundancies of
universal source codes are also of this form with d related to

the source alphabet size. In our case d = (m — 1)k is the
number of degrees of freedom in a state-constant rebalanced
portfolio with & states and m stocks.

v
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