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Abstract—Noisy network coding unifies network coding by
Ahlswede, Cai, Li, and Yeung for noiseless networks and
compress–forward by Cover and El Gamal for noisy relay
channels. In particular, it achieves the best known capacity inner
bounds for multi-source multicast networks including determin-
istic networks by Avestimehr, Diggavi, and Tse and erasure
networks by Dana, Gowaikar, Palanki, Hassibi, and Effros. This
paper extends noisy network coding for multicast networks to
networks with general message demand by combining the un-
derlying noisy network coding scheme with decoding techniques
for interference channels. At one extreme, noisy network coding is
combined with simultaneous decoding, while at the other extreme
interference is treated as noise. The potential of noisy network
coding as a canonical building block for wireless networks is
demonstrated via three examples of Gaussian networks that have
drawn recent attentions.

I. INTRODUCTION AND MAIN RESULTS

An N -node discrete memoryless network (DMN)

(X1×· · ·×XN , p(y1, . . . , yN |x1, . . . , xN ),Y1×· · ·×YN ) (1)

consists of N sender–receiver alphabet pairs (Xk,Yk), k ∈
[1 : N ] := {1, . . . , N}, and a collection of conditional pmfs
p(y1, . . . , yN |x1, . . . , xN ). Each node k ∈ [1 : N ] wishes to
send a message Mk to a set Dk of destination nodes. Formally,
a (2nR1 , . . . , 2nRN , n) code for a DMN consists of N message
sets [1 : 2nR1 ], . . . , [1 : 2nRN ], a set of encoders with encoder
k ∈ [1 : N ] that assigns an input symbol xki to each pair
(mk, y

i−1
k ) for i ∈ [1 : n], and a set of decoders with decoder

d ∈ ∪N
k=1Dk that assigns message estimates {m̂kd : k ∈ Sd}

to each (ynd ,md), where Sd := {k : d ∈ Dk} is the set of
nodes that send messages to destination d.

We assume that messages Mk, k ∈ [1 : N ], are each
uniformly distributed over [1 : 2nRk ], and are independent
of each other. The average probability of error is defined by

P (n)
e = P{M̂kd �= Mk for some d ∈ Dk, k ∈ [1 : N ]}.

A rate tuple (R1, . . . , RN ) is said to be achievable if there
exists a sequence of (2nR1 , . . . , 2nRN , n) codes with P

(n)
e →

0 as n→∞. The capacity region of the DMN is the closure
of the set of achievable rate tuples.

A computable characterization of the capacity region is
not known in general. The following cutset outer bound [1]
provides a necessary condition for reliable communication:

If the rate tuple (R1, . . . , RN ) is achievable, then there

exists some joint pmf p(x1, . . . , xN ) such that∑
k∈S:Dk∩Sc �=∅

Rk ≤ I(X(S);Y (Sc)|X(Sc)) (2)

for all S ⊆ [1 : N ] such that Dk ∩ Sc �= ∅.
There are several special cases for which the capacity

region is known. In the seminal paper on network coding [2],
Ahlswede, Cai, Li, and Yeung established the capacity for
the single-source multicast case (Rk = 0 for k �= 1) when
the network is noiseless, that is, when it can be represented
by a directed graph (N , E) with capacity limited links. They
showed that capacity coincides with the cutset bound, gen-
eralizing the max-flow min-cut theorem [3], [4] to multiple
destinations. Each relay in network coding sends a function
of its incoming signals over each outgoing link instead of
simply forwarding incoming signals. Dana, Gowaikar, Palanki,
Hassibi, and Effros [5] showed that network coding is also
optimal for noiseless multi-source multicast networks (D1 =
· · · = DN = D). These results have been further extended to
multicast scenarios over erasure networks [5] and deterministic
networks [6].

Recently, we have proposed noisy network coding
for multicast, which combines both network coding and
compress–forward by Cover and El Gamal [7] for the relay
channel.

Theorem 1 ([8]): Suppose Dk = D for k ∈ [1 : N ]. A rate
tuple (R1, . . . , RN ) is achievable if there exists some joint
pmf p(q)

∏N
k=1 p(xk|q)p(ŷk|yk, xk, q) such that

R(S) < min
d∈Sc∩D

(I(X(S); Ŷ (Sc), Yd|X(Sc), Q)

− I(Y (S); Ŷ (S)|XN , Ŷ (Sc), Yd, Q)) (3)

for all cutsets S ⊆ [1 : N ] with Sc ∩ D �= ∅, where R(S) =∑
k∈S Rk.
It can be readily checked that Theorem 1 recovers as special

cases aforementioned results including coding for wireless
relay networks and deterministic networks by Avestimehr,
Diggavi, and Tse [6], and coding for wireless erasure networks
by Dana, Gowaikar, Palanki, Hassibi, and Effros [5]. Com-
pared to the cutset bound, the inner bound (3) in Theorem
1 has the first term with Y replaced by the “compressed”
version Ŷ , the additional negative term that quantifies the
rate requirement to convey the compressed version, and the
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maximum over independent XN .
The key idea is to use block Markov message repetition

coding and simultaneous decoding. Instead of sending multiple
independent messages over several blocks and decoding them
sequentially as in previous relaying schemes, the same mes-
sage is sent multiple times using independent codebooks and
the decoder performs joint typicality decoding on the received
signals from all the blocks without explicitly decoding the
compression indices.

In the general message demand (nonmulticast) settings,
we note that Theorem 1 continues to hold with multicast
completion of destination nodes, i.e., requiring every message
to be decoded by all destination nodes D = ∪N

k=1Dk. Thus,
as a direct extension to Theorem 1, we can obtain an inner
bound on the capacity region for the DMN in the same form
as (3) with D = ∪N

k=1Dk.
In this paper, we further extend Theorem 1 to

general message demand settings. Noisy network
coding can be viewed as transforming a relay network
p(y1, . . . , yN |x1, . . . , xN ) into an interference network
p(ỹ1, . . . , ỹN |x1, . . . , xN ), where the effective channel output
at decoder k is given by Ỹ k = (Xk, Yk, Ŷ 1, . . . , Ŷ N ) and
the compressed channel observations (Ŷ 1, . . . , Ŷ N ) are
conveyed to decoders with some rate penalty. Thus, we can
further incorporate known coding techniques for interference
channels [9] to the noisy network coding. In a sense, the
multicast completion inner bound corresponds to the capacity
inner bound on the interference channel that is characterized
by the intersection of the capacity regions of the multiple
access channels, in which each decoder decodes all messages.
By relaxing the decoding procedure for each destination
node to correctly decode the intended messages only, we can
obtain the following:

Theorem 2: A rate tuple (R1, . . . , RN) is achievable
for the DMN if there exists some joint pmf
p(q)

∏N
k=1 p(xk|q)p(ŷk|yk, xk, q) such that

R(S) < min
d∈Sc∩D(S)

I(X(S); Ŷ (Sc), Yd|X(Sc), Q)

− I(Y (S); Ŷ (S)|XN , Ŷ (Sc), Yd, Q) (4)

for all cutsets S ⊆ [1 : N ] with Sc ∩ D(S) �= ∅, where
D(S) := ∪k∈SDk and R(S) = ∑

k∈S Rk.

For the detailed description of the coding scheme and its
analysis, refer to [8].

Since D(S) ⊂ D, Theorem 2 gives a tighter inner bound on
the capacity region. It is easy to find an example for which this
improvement is strict (for example, consider two orthogonal
noiseless links).

At the other extreme of dealing with interference from
unintended messages, the decoders can ignore interference as
noise rather than decoding it. This coding scheme results in
the following:

Theorem 3: A rate tuple (R1, . . . , RN) is achievable
for the DMN if there exists some joint pmf

p(q)
∏N

k=1 p(xk, uk|q)p(ŷk|yk, uk, q) with

R(T ) <I(X(T ), U(S); Ŷ (Sc), Yd|X(T c), U(Sc), Q)

− I(Y (S); Ŷ (S)|X(Sd), UN , Ŷ (Sc), Yd, Q) (5)

for all d ∈ ∪N
k=1Dk, S ⊆ [1 : N ], and T ⊆ Sd such that

d ∈ Sc, S ∩ Sd ⊆ T where T c := Sd\T .
Unlike the previous noisy network coding schemes, each

node uses superposition coding to send the compression index
and the message. Again, for the detailed description of the
coding scheme and its analysis, refer to [8].

II. GAUSSIAN NETWORK

Motivated by wireless networks, we consider the additive
white Gaussian noise (AWGN) network in which the channel
outputs are given by

Y N = GXN + ZN , (6)

where G ∈ R
N×N is the channel gain matrix and ZN

is a vector of independent white Gaussian noise processes
with zero mean and unit variance. We assume average power
constraint P on each sender, i.e.,

n∑
i=1

E
(
x2
ki(mk, Y

i−1
k )

)
≤ nP

for all k ∈ [1 : N ] and mk ∈ [1 : 2nRk ].
In the following subsections, we evaluate the performance

of noisy network coding for three Gaussian networks. We
first consider the Gaussian multiple-source multicast network,
and we establish an inner bound that improves upon previous
capacity approximation results by Avestimehr, Diggavi, and
Tse [10] and Perron [11] with a tighter gap to the cutset bound.
We then show that noisy network coding can outperform other
specialized schemes for two-way relay channels [12], [13] and
interference relay channels [14], [15].

A. AWGN-multiple multicast network

Theorem 4: Let D = D1 = · · · = DN . For any rate
tuple (R1, . . . , RN ) in the cutset outer bound, there exists
(R′1, . . . , R

′
N ) in the inner bound in Theorem 1 for the AWGN

network (6) such that∑
k∈S

(Rk −R′k) ≤
|S|
2

+
min{|S|, |Sc|}

2
log(2|S|)

for all S ⊆ [1 : N ] with Sc ∩ D �= ∅.
This theorem implies that the gap between the cutset bound

and our inner bound is less than or equal to (N/4) log(2N) for
N > 3, regardless of the values of the channel gain matrix G
and power constraint P .

The cutset outer bound for the AWGN multiple-source
multicast network simplifies to the set of rate tuples such that∑

k∈S
Rk ≤

1

2
log

∣∣∣∣I + P

2
G(S)G(S)T

∣∣∣∣
+

1

2
min{|S|, |Sc|} log(2|S|) (7)
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for all S ⊆ [1 : N ] with Sc ∩ D �= ∅. To show this, first note
that the cutset outer bound (2) continues to hold with the set
of input distributions satisfying E(X 2

k) ≤ P , k ∈ [1 : N ]. For
each S ⊆ [1 : N ] such that Sc∩D �= ∅, we can further loosen
the cutset outer bound as

R(S) ≤ I(X(S);Y (Sc)|X(Sc))

= h(Y (Sc)|X(Sc))− h(Y (Sc)|XN )

= h
(
G(S)X(S) + Z(Sc)|X(Sc)

)
− h(Y (Sc)|XN)

= h
(
G(S)X(S) + Z(Sc)

)
− h(Y (Sc)|XN )

=
1

2
log(2πe)|S

c|
∣∣∣I +G(S)KX(S)G(S)T

∣∣∣ (8)

− |S
c|
2

log(2πe)

≤ 1

2
log

∣∣∣I + tr(KX(S))G(S)G(S)T
∣∣∣ (9)

≤ 1

2
log

∣∣∣I + |S|P ·G(S)G(S)T
∣∣∣ (10)

≤ 1

2
log

∣∣∣∣2|S| · I + 2|S|P
2
·G(S)G(S)T

∣∣∣∣
≤ 1

2
log

∣∣∣∣I + P

2
G(S)G(S)T

∣∣∣∣+ |Sc|
2

log(2|S|),

where KX(S) is the covariance matrix of X(S), (9) follows
since tr(K)I − K is positive semidefinite for any covari-
ance matrix K [16, Theorem 7.7.3], and (10) follows since
tr(KX(S)) ≤ |S|P , from the power constraint. By rewriting
(10) as

1

2
log

∣∣∣I+ |S|P ·G(S)G(S)T
∣∣∣ = 1

2
log

∣∣∣I+ |S|P ·G(S)TG(S)
∣∣∣

and following similar steps, we also have

R(S) ≤ 1

2
log

∣∣∣∣I + P

2
G(S)TG(S)

∣∣∣∣ + |S|
2

log(2|S|)

=
1

2
log

∣∣∣∣I + P

2
G(S)G(S)T

∣∣∣∣+ |S|
2

log(2|S|).

Next, we evaluate Theorem 1 for the Gaussian network. Let
Q = ∅ and Xk, k ∈ [1 : N ], be i.i.d. Gaussian with zero mean
and variance P . Let

Ŷ k = Yk + Ẑk, k ∈ [1 : N ],

where Ẑk, k ∈ [1 : N ], are i.i.d. Gaussian with zero mean and
unit variance. Then for each S ⊆ [1 : N ] such that S c∩D �= ∅
and d ∈ D,

I(Ŷ (S);Y (S)|XN , Ŷ (Sc), Yd)

≤ I(Ŷ (S);Y (S)|XN )

= h(Ŷ (S)|XN )− h(Ŷ (S)|Y (S), XN )

=
|S|
2

log(4πe)− |S|
2

log(2πe)

=
|S|
2
,

where the first inequality is due to the Markovity

(Ŷ (Sc), Yd)→ (XN , Y (S))→ Ŷ (S). Furthermore,

I(X(S); Ŷ (Sc), Yd|X(Sc))

≥ I(X(S); Ŷ (Sc)|X(Sc))

= h(Ŷ (Sc)|X(Sc))− h(Ŷ (Sc)|XN)

=
1

2
log(2πe)|S

c| ∣∣2I +G(S)PG(S)T
∣∣− |Sc|

2
log(4πe)

=
1

2
log

∣∣∣∣I + P

2
G(S)G(S)T

∣∣∣∣ .
Therefore, by Theorem 1, a rate tuple (R1, . . . , RN ) is
achievable if R(S) < 1

2 log
∣∣I + P

2 G(S)G(S)T
∣∣ − |S|

2 for all
S ⊆ [1 : N ] such that Sc ∩ D �= ∅.

Comparing the above outer and inner bounds completes the
proof of Theorem 4.

B. Two-way relay channel

Consider the AWGN two-way relay channel

Y1 = g21X2 + g31X3 + Z1,

Y2 = g12X1 + g32X3 + Z2,

Y3 = g13X1 + g23X2 + Z3,

in which source nodes 1 and 2 wish to exchange messages
reliably with the help of relay node 3. Various coding schemes
for this channel have been investigated in [12], [13].

Rankov and Wittneben [12] showed that the amplify–
forward (AF) coding scheme results in the inner bound on the
capacity region that consists of all rate pairs (R1, R2) such
that

Rk <
1

2
log

(
ak +

√
a2k − b2k
2

)
, k ∈ {1, 2}

for some α ≤
√
P/(g213P + g223P + 1), where a1 :=

1 +
P (g2

12+α2g2
32g

2
13)

g2
32α

2+1
, a2 := 1 +

P (g2
21+α2g2

31g
2
23)

g2
31α

2+1
, b1 :=

2Pαg32g13g12
g2
32α

2+1
, and b2 := 2Pαg31g23g21

g2
31α

2+1
. They also showed that

an extension of the original compress–forward (CF) coding
scheme for the relay channel to the two-way relay channel
results in the following inner bound on the capacity region
that consists of all rate pairs (R1, R2) such that

R1 < C

(
g213P + (1 + σ2)g212P

1 + σ2

)
,

R2 < C

(
g223P + (1 + σ2)g221P

1 + σ2

)
for some

σ2 ≥ (1 + g212P )(1 + g213P )− (g12g13P )2

min{g232, g231}P
,

σ2 ≥ (1 + g221P )(1 + g223P )− (g21g23P )2

min{g232, g231}P
.

Specializing Theorem 2 to the AWGN two-way relay chan-
nel by setting Q = ∅ and Ŷ 3 = Y3 + Ẑ with Ẑ ∼ N(0, σ2),
this inner bound simplifies to the set of rate pairs (R1, R2)
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such that

R1 < C(g212P + g232P )− C(1/σ2),

R1 < C

(
g213P + (1 + σ2)g212P

1 + σ2

)
,

R2 < C(g221P1 + g231P )− C(1/σ2),

R2 < C

(
g223P + (1 + σ2)g221P

1 + σ2

)

for some σ2 > 0.
In Figure 1, we compare the performance of noisy network

coding (Theorem 2) to AF and CF for the case g12 = g21 = 1,
g13 = g31 = d−γ/2, and g23 = g32 = (1 − d)−γ/2, where
d ∈ [0, 1/2] is the location of the relay node between nodes
1 and 2 (which are unit distance apart) and γ = 3. Note
that noisy network coding outperforms the other two schemes,
coinciding with the compress–forward only when the relay is
midway between nodes 1 and 2 (d = 1/2) and when it is
collocated with node 1 (d = 0).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

3.5
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4.25

4.5
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5.5

 

 

Amplify forward
Compress forward
Noisy network coding

Su
m

ra
te

Relay location d

Fig. 1. Comparison of coding schemes for P = 10.

C. Interference relay channel

Consider the AWGN interference relay channel with orthog-
onal receiver components in Figure 2. The channel outputs are

Z4 Z3

Z5

X1

X2

Y4

Y5

Y3 R0

g13
g23g24

g15

g25

g14

Fig. 2. AWGN interference relay channel.

Yj = g1jX1 + g2jX2 + Zj , j = 3, 4, 5, where gij is the
channel gain of link (i, j). Source node 1 wishes to send a
message to destination node 4, while source node 2 wishes to
send a message to destination node 5. Relay node 3 helps the
communication of this interference channel by sending some
information about Y3 over a common noiseless link of rate R0

to both destination nodes.

Djeumou, Belmaga, and Lasaulce [14], and Razaghi and
Yu [15] showed that an extension of the original compress–
forward coding scheme for the relay channel to the interfer-
ence relay channel results in the inner bound on the capacity
region that consists of all rate pairs (R1, R2) such that

R1 < C

(
(g213 + (1 + σ2)g214)P + (g23g14 − g24g13)

2P 2

1 + σ2 + (g223 + (1 + σ2)g224)P

)
,

R2 < C

(
(g223 + (1 + σ2)g225)P + (g13g25 − g15g23)

2P 2

1 + σ2 + (g213 + (1 + σ2)g215)P

)
for some

σ2 ≥ 1

22R0 − 1
·max

{
(g13g24 − g23g14)

2P 2 + a1
(g214P + g224P + 1)

,

(g13g25 − g23g15)
2P 2 + a2

(g215P + g225P + 1)

}
,

where a1 := (g213+g214)P+(g223+g224)P +1 and a2 := (g213+
g215)P+(g223+g225)P+1. Razaghi and Yu [15] generalized the
hash–forward coding scheme [17], [18] for the relay channel
to the interference relay channel, in which the relay sends the
bin index (hash) of its noisy observation and destination nodes
use list decoding. This generalized hash–forward scheme gives
the inner bound on the capacity region that consists of the set
of rate pairs (R1, R2) such that

R1 < C

(
g214P

g224P + 1

)
+R0 − C

(
(g223 + g224)P + 1

(g224P + 1)σ2

)
,

R2 < C

(
g225P

g215P + 1

)
+R0 − C

(
(g213 + g215)P + 1

(g215P + 1)σ2

)

for some σ2 > 0 satisfying

σ2 ≤ 1

22R0 − 1
·min

{
(g13g24 − g23g14)

2P 2 + a1
(g214P + g224P + 1)

,

(g13g25 − g23g15)
2P 2 + a2

(g215P + g225P + 1)

}
,

where a1 and a2 are the same as above.
Specializing Theorem 2 by setting Ŷ 3 = Y3 + Ẑ with Ẑ ∼

N(0, σ2) gives the inner bound that consists of all rate pairs
(R1, R2) such that

R1 < C(g214P ) +R0 − C(1/σ2),

R1 < C

(
(g213 + (1 + σ2)g214)P

1 + σ2

)
,

R2 < C(g225P ) +R0 − C(1/σ2),

R2 < C

(
(g223 + (1 + σ2)g225)P

1 + σ2

)
,

R1 +R2 < C((g214 + g224)P ) +R0 − C(1/σ2),

R1 +R2 < C

(
aP + (1 + σ2)(g214 + g224)P + b21P

2

1 + σ2

)
,

R1 +R2 < C((g215 + g225)P ) +R0 − C(1/σ2),

R1 +R2 < C

(
aP + (1 + σ2)(g225 + g215)P + b22P

2

1 + σ2

)
,

where a := g213 + g223, b1 := g13g24 − g23g14, and b2 :=

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

607



g23g15− g13g25, for some σ2 > 0. By the same choice of Ŷ 3,
the inner bound in Theorem 3 can be specialized to the set of
rate pairs (R1, R2) such that

R1 < C

(
g214P

g224P + 1

)
+R0 − C

(
(g223 + g224)P + 1

(g224P + 1)σ2

)
,

R1 < C

(
(g213 + (1 + σ2)g214)P + (g23g14 − g24g13)

2P 2

1 + σ2 + (g223 + (1 + σ2)g224)P

)
,

R2 < C

(
g225P

g215P + 1

)
+R0 − C

(
(g213 + g215)P + 1

(g215P + 1)σ2

)
,

R2 < C

(
(g223 + (1 + σ2)g225)P + (g13g25 − g15g23)

2P 2

1 + σ2 + (g213 + (1 + σ2)g215)P

)

for some σ2 > 0.
In Figure 3, we compare noisy network coding (Theorems

2 and 3) to compress–forward (CF) and hash–forward (HF)
in [15]. The curve representing noisy network coding depicts
the maximum of achievable sum rates in Theorems 2 and 3.
Note that, although not shown in the figure, Theorem 3 alone
outperforms the other two schemes for all channel gains
and power constraints. At high signal-to-noise ratio (SNR),
Theorem 2 provides further improvement, since decoding other
messages is a better strategy when interference is strong.
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Hash forward
Compress forward
Noisy network coding

Theorem 3

Theorem 2

Su
m

ra
te

Power constraint P (in dB)

Fig. 3. Comparison of coding schemes for g14 = g25 = 1, g15 = g24 =
g13 = 0.5, g13 = 0.1.

III. CONCLUDING REMARKS

We presented two extensions of noisy network coding and
demonstrated that the new schemes can outperform previous
network compress–forward schemes. The reasons are: first,
the relays do not use Wyner–Ziv coding (no binning index to
decode), second, the destinations are not required to decode
the compression indices correctly, and third, simultaneous
decoding over all blocks is used.

Another advantage of noisy network coding is that it
performs generally well under high SNR conditions in the
network. In addition, it is a robust and scalable scheme in the
sense that the relay operations do not depend on the specific
codebooks used by the sources and destinations or even the
topology of the network. Noisy network coding, however, is
not always the best strategy. For example, for a cascade of

AWGN channels with low SNR, the optimal strategy is for the
relay to decode the message and then forward it to the final
destination. Noisy network coding can be further improved by
combining with partial decode–forward [7] to obtain hybrid
schemes similar to those in [7] and [19].
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