
VIDEO PROCESSING APPLICATIONS OF HIGH SPEED

CMOS IMAGE SENSORS

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Suk Hwan Lim

March 2003



c© Copyright by Suk Hwan Lim 2003

All Rights Reserved

ii





Abstract

An important trend in the design of digital cameras is the integration of capture

and processing onto a single CMOS chip. Although integrating the components of a

digital camera system onto a single chip significantly reduces system size and power,

it does not fully exploit the potential advantages of integration. We argue that a key

advantage of integration is the ability to exploit the high speed imaging capability of

CMOS image sensors to enable new applications and to improve the performance of

existing still and video processing applications. The idea is to capture frames at much

higher frame rates than the standard frame rate, process the high frame rate data

on chip, and output the video sequence and the application specific data at standard

frame rate.

In the first part of the dissertation we discuss two applications of this idea. The

first is optical flow estimation, which is the basis for many video applications. We

present a method for obtaining high accuracy optical flow estimates at a standard

frame rate by capturing and processing a high frame rate version of the video, and

compare its performance to methods that only use standard frame rate sequences. We

then present a method that uses a video sequence and accurate optical flow estimates

to correct sensor gain Fixed Pattern Noise (FPN). Simulation and experimental re-

sults demonstrate that significant reduction in gain FPN can be achieved using our

method.

In the second part of the dissertation we discuss hardware implementation issues of

high speed CMOS imaging systems. We designed, fabricated and tested a 352 × 288

pixel CMOS Digital Pixel Sensor chip with per-pixel single-slope ADC and 8-bit

dynamic memory in a standard digital 0.18µm CMOS process. The chip performs
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“snap-shot” image acquisition at continuous rate of 10, 000 frames/s or 1 Gpixels/s.

We then discuss the projected limits of integrating memory and processing with a

CMOS image sensor in 0.18µm process and below. We show that the integration of

an entire video camera system on a chip is not only feasible at 0.18µm process, but in

fact underutilizes the possible on-chip processing power. Further, we show that the

projected available on-chip processing power and memory are sufficient to perform

applications such as optical flow estimation.
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Chapter 1

Introduction

1.1 Digital cameras and image sensors

Digital still and video cameras are rapidly becoming ubiquitous, due to reduced costs

and increasing demands of multimedia applications. Digital still cameras are es-

pecially becoming very popular and are rapidly replacing analog and film cameras.

Although replacing film cameras is one of many approaches one can take for digi-

tal imaging, it does not fully exploit the capabilities of digital imaging. Especially

with the emergence of CMOS image sensors, digital still and video cameras enable

many new imaging applications such as machine vision, biometrics and image-based

rendering. Moreover, with miniaturization and cost reduction, image sensors can be

embedded in virtually every multimedia system such as PC-based web cameras, cell

phones, PDAs, games and toys.

Every digital imaging system employs an image sensor which converts light sig-

nals into electrical signals. The image sensor plays a pivotal role in the final image

quality. Most of digital cameras today use the charge-coupled devices (CCDs) to

implement the image sensors [1]-[8]. In the CCD image sensors, incident photons

are converted to charge which are then accumulated by the photodetectors during

exposure time. During the following readout, the accumulated charge in the array

is sequentially transferred into the vertical and horizontal CCDs and finally shifted

out to chip level output amplifier where it is converted to voltage signal as is shown

1



CHAPTER 1. INTRODUCTION 2

in Figure 1.1. CCDs generally consume lots of power because of high capacitance

and high switching frequency. Since CCD image sensor is fabricated using specialized

process with optimized photodetectors, it has very low noise and good uniformity but

cannot be integrated with memory and processing which are typically implemented

in CMOS technology. Thus, a typical digital camera system today (see Figure 1.2)

employs a CCD image sensor and several other chips for analog signal generation,

A/D conversion, digital image processing and compression, control, interface, and

storage.

Photodetector

Vertical

CCD

CCD

Output
Amplifier

Horizontal

Figure 1.1: Block diagram of a typical CCD image sensors.

In contrast, recently developed CMOS image sensors are fabricated using standard

CMOS process with no or minor modification [9]-[11]. Similar to CCDs, incident

photons are converted to charge which are then accumulated by the photodetectors

during exposure time. Unlike CCDs, however, charge (or voltage) in the pixel array

are read out using the row decoders and column amplifiers and multiplexers. This

readout scheme is similar to a memory structure. Currently, there are three pixel

architectures for CMOS image sensors: Passive Pixel Sensor (PPS), Active Pixel
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Sensor
Image A

D
C

Color
Processing

Image Enhancement
                &
Image Compression

Control

Interface
       &

Sensor
     &
ADC

Image
CMOS

(a)

PC− PC−

(b)

Board

CCD

(c)

Memory

ASIC

Board

ADC

Analog
Proc &

ASIC

Memory

Figure 1.2: Digital Camera System: (a) functional block diagram, (b) implementation
using CCD, and (c) implementation using CMOS image sensor.
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Sensor (APS) and Digital Pixel Sensor (DPS). PPS [12]-[18] has only one transistor

per pixel, as shown in Figure 1.3. The charge in each pixel is read out via a column

charge amplifier located outside of the pixel array. Although PPS has small pixel

size and large fill factor, it suffers from slow readout speed and low SNR. APS [19]-

[33] tries to solve these problems by having a buffer in each pixel, which is normally

implemented with three or four transistors (see Figure 1.4). In comparison to PPS,

APS has larger pixel size and lower fill factor, but its readout is faster and has

higher SNR. In DPS, each pixel has an ADC and all ADCs operate in parallel as

shown in Figure 1.5. With an ADC per pixel, massively parallel A/D conversion

and high speed digital readout become practical, eliminating analog A/D conversion

and readout bottlenecks. The main drawback of DPS is its large pixel size due to

the increased number of transistors per pixel, which is less problematic as CMOS

technology scales down to 0.18µm and below.

Bit line

Word line

Light

Figure 1.3: Passive pixel sensor (PPS)

Regardless of the architecture, current CMOS image sensors typically have lower

image quality and higher noise level than CCD image sensor, mainly because the

fabrication process cannot be optimized for image sensing. Moreover, it has higher

fixed pattern noise since image data are read out through different chains of buffers
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Bit line

Word line

Light

Figure 1.4: Active Pixel Sensor (APS)

Bit line

Word line

Light
ADC Mem

Figure 1.5: Digital Pixel Sensor (DPS)
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and amplifiers. CMOS image sensors, however, have other unique advantages over

CCDs. First, CMOS image sensors consume much less power than CCD image sensor

due to lower voltage swing, switching frequency and capacitance. Second, integrating

image sensing with A/D conversion, memory and processing on a single chip is possible

for CMOS image sensor. Several researchers [34, 35, 36, 37] have exploited these

advantages and have demonstrated low power consumption and reduction in chip

count for a digital camera system by integrating the analog signal generation, A/D

conversion, and some of the control and image processing with the sensor on the same

chip. Loinaz et al. [35] describe a PC-based single chip digital color camera, which

performs image capturing using a photogate APS, automatic gain control, an 8-bit

full flash ADC, and all the computationally intensive pixel-rate tasks such as color

interpolation, color correction, and image statistics computation. Smith et al. [36]

describe a single chip CMOS NTSC video camera that integrates an APS, a half-flash

sub-ranging ADC, and all the processing necessary to produce color NTSC video with

only an external power supply and a crystal oscillator.

1.2 High frame rate capture – standard frame rate

output

Commercially available PC camera chips now routinely integrate A/D conversion,

gamma correction, exposure and gain control, color correction and white balance with

a CMOS CIF and VGA size image sensor. As CMOS image sensors scale to 0.18µm

processes and below, integration of the rest of the camera system becomes feasible

resulting in true “camera-on-chip”. Although integrating the camera system shown

in Figure 1.2 onto a single chip can significantly reduce system size and power, it does

not fully exploit the potential advantages of integration. In this dissertation we argue

that a key advantage of integration is the ability to exploit the high speed imaging

capability of CMOS image sensors. Several recent papers have demonstrated the high

speed imaging capability of CMOS image sensors [38, 39, 40, 41]. Krymski et al. [38]

describe a 1024 × 1024 Active Pixel Sensor (APS) with column level ADC achieving
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frame rate of 500 frames/s. Stevanovic et al. [39] describe 256 × 256 APS with 64

analog outputs achieving frame rate of 1000 frames/s. Kleinfelder et al. [40] describe

a 352 × 288 Digital Pixel Sensor(DPS) with per pixel bit parallel ADC achieving

10,000 frames/s or 1 Giga-pixels/s.

The high speed imaging capability of CMOS image sensors can benefit conven-

tional camera systems by enabling more efficient implementations of several applica-

tions such as motion estimation [42], video stabilization, and video compression, and

of new applications such as multiple capture for enhancing dynamic range [43, 44, 45]

and motion blur-free capture [46]. Digital still and video cameras, however, operate

at low frame rates and it would be too costly, if not infeasible, to operate them at

high frame rates due to the high output data rate requirements of the sensor, the

memory, and the processing chips. Integrating the memory and processing with the

sensor on the same chip solves the high output data rate problem and provides an

economical way to exploit the high speed capability of a CMOS image sensor. The

basic idea, which will be explored in this dissertation (see Figure 1.6 and Handoko et

al. [42, 47]), is to (i) operate the sensor at a much higher frame rate than the standard

frame rate, (ii) exploit the high on-chip bandwidth between the sensor, the memory

and the processors to process the high frame rate data, and (iii) only output the

images with any application specific data at the standard frame rate. Thus, off-chip

data rate which is very important for the system cost is not increased although high

frame rate sequences are used.

Application specif ic
output data

High frame rate capture Standard frame rate output

Processing
Output video

+

Figure 1.6: High frame rate capture – standard frame rate output.
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Extending dynamic range and capturing motion blur-free images with this ap-

proach have been explored by several researchers [43, 44, 45, 46]. In those applica-

tions, video data at each pixel are processed temporally, independent of the neighbor-

ing pixels. This has limitations because the spatial information is not exploited. In

this dissertation, we extend our high-frame-rate-capture/standard-frame-rate-output

approach from 1D temporal processing to 3D spatio-temporal processing. This ex-

tension will enable more efficient implementations of several applications in video

processing, computer vision and even image-based rendering. Moreover, it opens

door to many new applications in those fields.

1.3 Thesis organization

The dissertation discusses both the hardware and algorithmic aspects of video pro-

cessing applications using high speed imagers and can thus be divided into two main

parts. The first part, which includes Chapter 2 and 3, describes video processing

applications enabled by high speed imaging capability of CMOS image sensors. The

applications described follow the basic approach described in the previous section.

The second part, which is Chapter 4, is on hardware and implementation issues. We

present a DPS chip that demonstrates the high speed imaging capability of CMOS

image sensor and then show that implementing a high speed imaging system on a

single chip is feasible. We next briefly summarize of each chapter.

Chapter 2 describes a method for obtaining high accuracy optical flow estimates

at a standard frame rate by capturing and processing a high frame rate version of

the video and compare its performance to methods that only use standard frame rate

sequences. We demonstrate significant performance improvements over conventional

optical flow estimation that use standard frame rate image sequences.

Chapter 3 describes a method that uses a video sequence and accurate optical

flow estimates to correct sensor gain Fixed Pattern Noise (FPN). The captured se-

quence and its optical flow are used to estimate gain FPN. Assuming brightness

constancy along the motion trajectories, the pixels are grouped in blocks and each

block’s pixel gains are estimated by iteratively minimizing the sum of the squared
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brightness variations along the motion trajectories. Significant reductions in gain

FPN are demonstrated using both real and synthetically generated video sequences

with modest computational requirements.

Chapter 4 discusses the hardware implementation issues of the high-speed imaging

system. On the sensor side, a 352 × 288 pixel CMOS Digital Pixel Sensor chip

with per-pixel single-slope ADC and 8-bit dynamic memory in a standard digital

0.18µm CMOS process is described. The chip performs “snap-shot” image acquisition

at continuous rate of 10,000 frames/s or 1 Gpixels/s. The chip demonstrates the

high speed imaging capability of CMOS image sensors. We then discuss the limits

on memory size and processing power that can be integrated with a CMOS image

sensor in 0.18µm process and below. We show that the integration of an entire

video camera system on a chip is not only feasible at 0.18µm process, but in fact

underutilizes the possible on-chip processing power. Further, we argue that the on-

chip processing power and memory are sufficient to perform applications such as

optical flow estimation by operating the sensor at high frame rate. As technology

scales, applications that require even more processing power and memory such as

tracking, pattern recognition, and 3D structure estimation may be implemented on a

single chip.

Finally Chapter 5 concludes the thesis and discusses the most likely directions for

future related research.



Chapter 2

Optical Flow Estimation

2.1 Introduction

A key problem in the processing of video sequences is estimating the motion be-

tween video frames, often referred to as optical flow estimation (OFE). Once esti-

mated, optical flow can be used in performing a wide variety of tasks such as video

compression, 3-D surface structure estimation, super-resolution, motion-based seg-

mentation and image registration. Optical flow estimation based on standard frame

rate video sequences, such as 30 frames/s, has been extensively researched with sev-

eral classes of methods developed including gradient-based, region-based matching,

energy-based, Bayesian, and phase-based. Excellent survey papers that briefly de-

scribe several classes of methods and compare the performance of the methods can

be found in [48, 49, 50].

There are several benefits of using high frame rate sequences for OFE. First, as

frame rate increases, the intensity values along the motion trajectories vary less be-

tween consecutive frames when illumination level changes or occlusion occurs. Since

many optical flow estimation methods explicitly or implicitly assume that intensity

along motion trajectories stay constant [48, 49, 50], it is expected that using high

frame rate sequences can enhance the estimation accuracy of these algorithms. An-

other important benefit is that as frame rate is increased the captured sequence

exhibits less motion aliasing. Indeed large errors due to motion aliasing can occur

10
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even when using the best optical flow estimators. For example, when motion aliasing

occurs a wagon wheel might appear to rotate backward even to a human observer

when seen through devices such as movie screen and TV. This specific example is

discussed in more detail in Section 2.3. There are many instances when the standard

frame rate of 30 frames/s is not sufficient to avoid motion aliasing and thus incorrect

optical flow estimates. Note that motion aliasing not only depends on the veloci-

ties but also on the spatial bandwidths. Thus, capturing sequences at a high frame

rate not only helps when velocities are large but also for complex images with low

velocities but high spatial bandwidths.

This chapter is organized as follows. In Section 2.2 we present a method [51, 52]

for accurate optical flow estimation at a standard frame rate from a high frame rate

version of the video sequence. This method is based on the well-known Lucas-Kanade

algorithm [53]. Using synthetic input sequences generated by image warping of a still

image, we also show significant improvements in accuracy attained using the proposed

method. We then examine the memory and computational requirements of the pro-

posed method. In Section 2.3 we give a brief review of 3-D spatio-temporal sampling

theory and the analyze the effects of temporal sampling rate and motion aliasing on

OFE. We present simulation results using sinusoidal input sequences showing that the

minimum frame rate needed to achieve high accuracy is largely determined by the

minimum frame rate necessary to avoid motion aliasing. In Section 2.4 we discuss how

the proposed method can be used with OFE algorithms other than the Lucas-Kanade

algorithm. In particular, we extend the Haussecker algorithm [64] to work with high

frame rate sequences and show that with this extension high accuracy optical flow

estimates can be obtained even when brightness varies with time.
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2.2 Optical flow estimation using high frame rate

sequences

2.2.1 Proposed method

In this subsection we present a method for obtaining high accuracy optical flow esti-

mates at a standard frame rate by capturing and processing a high frame rate version

of the video. The idea is to estimate optical flow at a high frame rate and then

carefully integrate it temporally to estimate the optical flow between frames at the

slower standard frame rate. Temporal integration, however, must be performed with-

out losing the accuracy gained by using the high frame rate sequence. Obviously, if

the temporal integration does not preserve the accuracy provided by the high frame

rate sequence, then this approach would lose many of its benefits.

The block diagram of our proposed method is shown in Figure 2.1 for the case

when the frame rate is 3 times the standard frame rate. We define OV as the over-

sampling factor (i.e., the ratio of the capture frame rate to the standard frame rate)

and thus OV = 3 in the block diagram. Consider the sequence of high-speed frames

beginning with a standard-speed frame (shaded frame in the figure) and ending with

the following standard-speed frame. We first obtain high accuracy optical flow es-

timates between consecutive high-speed frames. These estimates are then used to

obtain a good estimate of the optical flow between the two standard-speed frames.

We first describe how optical flow at a high frame rate is estimated. Although vir-

tually any OFE method can be employed for this stage, we decided to use a gradient-

based method since higher frame rate leads to reduced motion aliasing and better

estimation of temporal derivatives, which directly improve the performance of such

methods. In addition, because of the smaller displacements between consecutive

frames in a high-speed sequence, smaller kernel sizes for smoothing and computing

gradients can be used, which reduces the memory and computational requirements of

the method.

Of the gradient-based methods, we chose the well known Lucas-Kanade’s algo-

rithm [53], which was shown to be among the most accurate and computationally
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high frame rate
Optical flow at

Scene 

Intermediate frames

imager
frame rate

Optical flow

at standardHigh frame 
rate sequence

High speed 

Standard−speed frames

(Lucas−Kanade)

Estimate
Optical flow

Accumulate

and refine

Figure 2.1: The block diagram of the proposed method (OV = 3).

efficient methods for optical flow estimation [48]. A block diagram of the Lucas-

Kanade OFE method is shown in Figure 2.2. Each frame is first pre-filtered using a

spatio-temporal low pass filter to reduce aliasing and systematic error in the gradient

estimates. The gradients ix, iy, and it are typically computed using a 5-tap filter [48].

The velocity vector is then computed for each pixel (x, y) by solving the 2 × 2 linear

equation [ ∑
wi2x

∑
wixiy∑

wixiy
∑

wi2y

] [
vx

vy

]
= −

[ ∑
wixit∑
wiyit

]
.

Note that we have not included the spatial parameters (x, y) in the formulation to

simplify notation. Here w(x, y) is a window function that assigns higher weight to

the center of the neighborhood around (x, y) and the sums are typically over 5 × 5

pixel neighborhoods.

Gradient 

Estimation

Construct

2x2 matrix

Solve linear

equation
Scene

flow

Optical
Smoothing

Figure 2.2: Block diagram of Lucas-Kanade method. Note that the last three blocks
are performed for each pixel of each frame.
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After optical flow has been estimated at the high frame rate, we use it to es-

timate the optical flow at the standard frame rate. This is the third block of the

block diagram in Figure 2.1. The key in this stage is to integrate optical flow tem-

porally without losing the accuracy gained using the high frame rate sequences. A

straightforward approach would be to simply accumulate the optical flow estimates

between consecutive high-speed frames along the motion trajectories. The problem

with this approach is that errors can accumulate with the accumulation of the optical

flow estimates. To understand how errors can accumulate for a pixel, consider the

diagram in Figure 2.3, where ek,l is the magnitude of the OFE error vector between

frames k and l. Assuming that θk, the angles between the error vectors in the figure

are random and uniformly distributed and that the mean squared magnitude of the

OFE error between consecutive high-speed frames are equal, i.e., E(e2
j−1,j) = E(e2

0,1)

for j = 1, . . . , k, the total mean-squared error is given by

E(e2
0,k) = E(e2

0,k−1) + E(e2
k−1,k) − 2E(ek−1,ke0,k−1 cos θk)

=
k∑

j=1

E(e2
j−1,j) − 2

k∑
j=1

E(ej−1,je0,j−1 cos θj)

=
k∑

j=1

E(e2
j−1,j) = kE(e2

0,1),

which grows linearly with k. On the other hand, if the optical flow estimation errors

are systematic, i.e., line up from one frame to the next, and their magnitudes are

temporally independent, which yields E(ej−1,jel−1,l) = E(ej−1,j)E(el−1,l), then the

total mean-squared error is given by

E[e2
0,k] = E[e2

0,k−1 + e2
k−1,k + 2ek−1,ke0,k] = E[(e0,k−1 + ek−1,k)

2]

= E[(
k∑

j=1

ej−1,j)
2] = k2E[e2

0,1],

which grows quadratically with k. In practice, the optical flow estimation error was

shown to have a random component and a non-zero systematic component by several
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θk
e0,k−1

ek−1,k

e0,k

e2
0,k = e2

0,k−1 + e2
k−1,k − 2ek−1,ke0,k cos θk

Figure 2.3: The accumulation of error vectors when accumulating optical flow without
using refinement.

researchers [54, 55, 56, 57], and as a result, the mean-squared error E[e2
0,k] is expected

to grow faster than linear but slower than quadratic in k.

To prevent this error accumulation, we add a refinement (or correction) stage after

each iteration (see Figure 2.4). We obtain frame k̂ by warping frame 0 according to

our accumulated optical flow estimate d̃, and assume that frame k is obtained by

warping frame 0 according to the true motion between the two frames, (which we do

not know). By estimating the displacement between frames k and k̂, we can estimate

the error between the true flow and the initial estimate d̃. In the refinement stage,

we estimate this error and add it to the accumulated optical flow estimate. Although

the estimation of the error is not perfect, we found that it significantly reduces error

accumulation.

A description of the proposed method is given below. Consider OV +1 high-speed

frames beginning with a standard-speed output frame and ending with the following

one. Number the frames 0, 1, . . . , OV and let d̂k,l be the estimated optical flow (dis-

placement) from frame k to frame l, where 0 ≤ k ≤ l ≤ OV . The end goal is to

estimate the optical flow between frames 0 and OV , i.e, d̂0,OV .

Proposed method:

1. Capture a standard-speed frame, set k = 0.

2. Capture the next high-speed frame and set k = k + 1.

3. Estimate d̂k−1,k using Lucas-Kanade method.
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1)LKgiven

2)Accumulate(d̃)

3)Warp(d̃) 4)Refine(∆)

Initial estimate(d̃)

True motion(
−→
d )

New estimate(d̂)
Error estimate(∆)

Figure 2.4: Accumulate and refine stage.

4. d̃0,k = d̂0,k−1 + d̂k−1,k where addition of optical flow estimates are along the

motion trajectories.

5. Estimate ∆k, the displacement between frame k and k̂.

6. Set refined estimate d̂0,k = d̃0,k + ∆k.

7. Repeat steps 2 through 6 until k = OV

8. Output d̂0,OV the final estimate of optical flow at the standard frame rate

Since the proposed algorithm is iterative, its memory requirement is independent

of frame rate. Furthermore, since it uses 2-tap temporal filter for smoothing and es-

timating temporal gradients, its memory requirement is less than that of the conven-

tional Lucas-Kanade method, which typically uses a 5-tap temporal filter. Assuming

an M × N image, our method requires approximately 190MN(OV ) operations per

frame and 12MN bytes of frame memory. By comparison the standard Lucas-Kanade

method as implemented by Barron et al. [48] requires 105MN operations per frame

and 16MN bytes of frame memory.
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2.2.2 Simulation and results

In this subsection, we describe the simulations we performed using synthetically gener-

ated natural image sequences to test our optical flow estimation method. To evaluate

the performance of the proposed method and compare with methods using standard

frame rate sequences, we need to compute the optical flow using both the standard

and high frame rate versions of the same sequence, and then compare the estimated

optical flow in each case to the true optical flow. We use synthetically generated

video sequences obtained by warping of a natural image. The reason for using syn-

thetic sequences, instead of real video sequences, is that the amount of displacement

between consecutive frames can be controlled and the true optical flow can be easily

computed from the warping parameters.

We use a realistic image sensor model [60] that incorporates motion blur and noise

in the generation of the synthetic sequences, since these effects can vary significantly

as a function of frame rate, and can thus affect the performance of optical flow

estimation. In particular, high frame rate sequences have less motion blur but suffer

from lower SNR, which adversely affects the accuracy of optical flow estimation. The

image sensor in a digital camera comprises a 2-D array of pixels. During capture,

each pixel converts incident photon flux into photocurrent. Since the photocurrent

density j(x, y, t) A/cm2 is too small to measure directly, it is spatially and temporally

integrated onto a capacitor in each pixel and the charge q(m,n) is read out at the

end of exposure time T . Ignoring dark current, the output charge from a pixel can

be expressed as

q(m,n) =

∫ T

0

∫ ny0+Y

ny0

∫ mx0+X

mx0

j(x, y, t)dxdydt + N(m,n), (2.1)

where x0 and y0 are the pixel dimensions, X and Y are the photodiode dimensions,

(m,n) is the pixel index, and N(m,n) is the noise charge. The noise is the sum of

two independent components, shot noise and readout noise. The spatial and temporal

integration results in low pass filtering that can cause motion blur. Note that the pixel

intensity i(m,n) commonly used in image processing literature is directly proportional

to the charge q(m,n).
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The steps of generating a synthetic sequence are as follows.

1. Warp a high resolution (1312×2000) image using perspective warping to create

a high resolution sequence.

2. Spatially and temporally integrate (according to Equation (1)) and subsample

the high resolution sequence to obtain a low resolution sequence. In our exam-

ple, we subsampled by factors of 4 × 4 spatially and 10 temporally to obtain

each high-speed frame.

3. Add readout noise and shot noise according to the model.

4. Quantize the sequence to 8 bits/pixel.

Three different scenes derived from a natural image (Figure 2.5) were used to

generate the synthetic sequences. For each scene, two versions of each video, one

captured at a standard frame rate (OV = 1) and the other captured at four times

the standard frame rate (OV = 4), are generated as described above. The maximum

displacements were between 3 and 4 pixels/frame at the standard frame rate. We

performed optical flow estimation on the (OV = 1) sequences using the standard

Lucas-Kanade method as implemented by Barron et al. [48] and on the (OV = 4) se-

quences using the proposed method. Both methods generate optical flow estimates at

a standard frame rate of 30 frames/s. Note that the standard Lucas-Kanade method

was implemented using 5-tap temporal filters for smoothing and estimating tempo-

ral gradients while the proposed method used 2-tap temporal filters. The resulting

average angular errors between the true and the estimated optical flows are given in

Table 2.1. The densities of all estimated optical flows are close to 50%.

The results demonstrate that using the proposed method in conjunction with the

high frame rate sequence can achieve higher accuracy. Note that the displacements

were kept relatively small (as measured at the standard frame rate) to make com-

parison between the two methods more fair. As displacements increase, the accuracy

of the standard Lucas-Kanade method deteriorates rapidly and hierarchical methods

should be used in the comparison instead. On the other hand, the proposed method

is much more robust to large displacements because of the higher sampling rate.
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(a) (b)

Figure 2.5: (a) One frame of a test sequence and (b) its known optical flow.

Lucas-Kanade method at Proposed method using
standard frame rate (OV = 1) high frame rate sequence (OV = 4)

Scene
Angular error Magnitude error Angular error Magnitude error

1 4.43◦ 0.24 3.43◦ 0.14
2 3.94◦ 0.24 2.91◦ 0.17
3 4.56◦ 0.32 2.67◦ 0.17

Table 2.1: Average angular error and magnitude error using Lucas-Kanade method
with standard frame rate sequences versus the proposed method using high frame
rate sequences.
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To investigate the gain in accuracy of the proposed method for large displace-

ments, we applied the Lucas-Kanade method, our proposed method with OV = 10,

and the hierarchical matching-based method by Anandan [61] as implemented by Bar-

ron [48] to a synthetic sequence. The maximum displacement was 10 pixels/frame

at the standard frame rate. The average angular errors and magnitude errors of the

estimated optical flows are given in Table 2.2. For comparison, we calculated average

errors for Anandan’s method at locations where Lucas-Kanade method gave valid

optical flow, although Anandan’s method can provide 100% density. Thus, values in

the table were calculated where the densities of all estimated optical flows are close

to 50%.

Angular error Magnitude error
Lucas-Kanade method 9.18◦ 1.49

Anandan’s method 4.72◦ 0.53
Proposed method (OV = 10) 1.82◦ 0.21

Table 2.2: Average angular and magnitude error using Lucas-Kanade, Anandan’s and
proposed method.

2.3 Effect of motion aliasing on optical flow esti-

mation

This section reviews 3-D spatio-temporal sampling theory and investigates the effect

of motion aliasing on the accuracy of optical flow estimation. We hypothesize that

the minimum frame rate necessary to achieve good performance is largely determined

by the minimum frame rate necessary to prevent motion aliasing in the sequence.

This is supported in Subsection 2.3.2 through simulation results using the proposed

method.
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2.3.1 Review of spatio-temporal sampling theory

A simplified but highly insightful example of motion is that of global motion with

constant velocity in the image plane. Assuming that intensity values are constant

along the motion trajectories without any occlusion, the pixel intensity is given by

i(x, y, t) = i(x − vx, y − vy, 0)

= i0(x − vx, y − vy),

where i0(x, y) denotes the 2-D pixel intensity for t = 0 and vx and vy are the global

velocities in the x and y directions, respectively. This is commonly assumed either

globally or locally in many applications such as motion-compensated standards con-

version and video compression. After taking the Fourier transform, we obtain

I(fx, fy, ft) = I0(fx, fy) · δ(fxvx + fyvy + ft),

where I0(fx, fy) is the 2-D Fourier transform of i0(x, y) and δ(·) is the 1-D Dirac

delta function. Thus, it is clear that the energy of I(fx, fy, ft) is confined to a plane

given by fxvx + fyvy + ft = 0. If we assume that i0(x, y) is bandlimited such that

I(fx, fy) = 0 for |fx| > Bx and |fy| > By, then i(x, y, t) is bandlimited temporally

as well, i.e, I(fx, fy, ft) = 0 for |ft| > Bt where Bt = Bxvx + Byvy. Note that the

temporal bandwidth depends on both the spatial bandwidths and the spatial velocities.

To simplify our discussion, we assume in the following that sampling is performed

only along the temporal direction and that the spatial variables are taken as contin-

uous variables (no sampling along the spatial directions). While this may initially

seem somewhat strange, it greatly simplifies the analysis, and interestingly is not en-

tirely unrealistic, since it is analogous to the shooting of motion picture film, where

each film frame corresponds to a temporal sample of the video. Figure 2.6 shows the

spatio-temporal spectrum of video when sampled only in the temporal direction. For

simplicity of illustration, we consider its projection onto the (fx, ft)-plane, where the

support can be simplified to fxvx + ft = 0. Each line represents the spatio-temporal

support of the sampled video sequence.
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Figure 2.6: Spatio-temporal spectrum of a temporally sampled video.

Let us consider the problem of how fast we should sample the original continu-

ous video signal along the temporal dimension such that it can be perfectly recov-

ered from its samples. Assume that an ideal lowpass filter with rectangular support

in the 3-D frequency domain is used for reconstruction, although in certain ideal

cases, a sub-Nyquist sampled signal can also be reconstructed by an ideal motion-

compensated reconstruction filter assuming the replicated spectra do not overlap (see

[50] for details). To recover the original continuous spatio-temporal video signal from

its temporally sampled version, it is clear from the figure that the temporal sampling

frequency (or frame rate) fs must be greater than 2Bt in order to avoid aliasing in

the temporal direction. If we assume global motion with constant velocity vx and vy

(in pixels per standard-speed frame) and spatially bandlimited image with Bx and By

as the horizontal and vertical spatial bandwidths (in cycles per pixel), the minimum

temporal sampling frequency fs,Nyq to avoid motion aliasing is given by

fs,Nyq = 2Bt = 2Bxvx + 2Byvy, (2.2)
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where fs,Nyq is in cycles per standard-speed frame. Note that the temporal sam-

pling frequency in cycles per standard-speed frame is the oversampling factor OV .

Moreover, since OV is an integer in our framework to ensure that standard-speed

frames correspond to a captured high-speed frame (see Figure 2.1), the minimum

oversampling factor to avoid motion aliasing, OVtheo, can be represented as

OVtheo = �fs,Nyq�
= �2Bxvx + 2Byvy�.

To illustrate this relationship consider the simple case of a sequence with only global

motion in the horizontal direction (i.e., with vy = 0). Figure 2.7 plots OVtheo =

�2Bxvx� versus horizontal velocity and spatial bandwidth for this case.
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Figure 2.7: Minimum OV to avoid motion aliasing, as a function of horizontal velocity
vx and horizontal spatial bandwidth Bx.

Motion aliasing adversely affects the performance of optical flow estimation even

as perceived by the human visual system. This is illustrated by the classic example of
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a rotating wagon wheel (see Figure 2.8). In this example the wagon wheel is rotating

counter-clockwise and we wish to estimate its motion from two frames captured at

times t = 0 and t = 1. The solid lines represent positions of the wheel and spokes

at t = 0 and the dashed lines represent the positions at t = 1. Optical flow is

locally estimated for the two shaded regions of the image in Figure 2.8. As can be

seen, the optical flow estimates are in the opposite direction of the true motion (as

often experienced by a human observer watching through display devices such as

TVs and projectors). The wheel is rotating counter-clockwise, while the optical flow

estimates from the local image regions would suggest that it is rotating clockwise.

This ambiguity is caused by insufficient temporal sampling and the fact that optical

flow estimation (and the human visual system) implicitly assume the smallest possible

displacements (corresponding to a lowpass filtering of the possible motions).

Figure 2.8: Wagon wheel rotating counter-clockwise illustrating motion aliasing from
insufficient temporal sampling: the local image regions (gray boxes) appear to move
clockwise.

Let us consider the spatio-temporal frequency content of the local image regions

in Figure 2.8. Since each shaded region has a dominant spatial frequency component

and the assumption of global velocity for each small image region [48] holds, its

spatio-temporal frequency diagram can be plotted as shown in Figure 2.9 (A). The
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circles represent the frequency content of a sinusoid and the dashed lines represent the

plane where most of the energy resides. Note that the slope of the plane is inversely

proportional to the negative of the velocity. The spatio-temporal frequency content of

the baseband signal after reconstruction by the OFE algorithm is plotted in Figure 2.9

(B). As can be seen aliasing causes the slope at which most of the energy resides to

not only be different in magnitude, but also to have a different sign, corresponding to

motion in the opposite direction. This example shows that motion aliasing can cause

incorrect motion estimates for any OFE algorithm. To overcome motion aliasing,

one must either sample sufficiently fast, or have prior information about the possible

motions as in the case of the moving wagon wheel, where the human observer makes

use of the direction of motion of the wagon itself to correct the misperception about

the rotation direction of the wheel.

fs−fs

ftft

fx

fx

(A) (B)

Figure 2.9: Spatio-temporal diagrams of, (A) the shaded region in Figure 2.8 and (B)
its baseband signal.
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2.3.2 Simulation and results

In this subsection we discuss simulation results using sinusoidal test sequences and the

synthetically generated natural image sequence used in Subsection 2.2.2. The reason

for using sinusoidal sequences is to assess the performance of the proposed method

as spatial frequency and velocity are varied in a controlled manner. As discussed in

the previous subsection, motion aliasing depends on both the spatial frequency and

the velocity and can have a detrimental effect on optical flow estimation. Using a

natural sequence, it would be difficult to understand the behavior of the proposed

method with respect to spatial frequency, since in such a sequence, each local region

is likely to have different spatial frequency content and the Lucas-Kanade method

estimates optical flow by performing spatially local operations. In addition, typical

figures of merit, such as average angular error and average magnitude error, would

be averaged out across the frame. The use of sinusoidal test sequences can overcome

these problems and can enable us to find the minimum OV needed to obtain a desired

accuracy, which can then be used to select the minimum high-speed frame rate for a

natural scene.

We considered a family of 2-D sinusoidal sequences with equal horizontal and

vertical frequencies fx = fy moving only in the horizontal direction at speed vx (i.e.,

vy = 0). For each fx and vx, we generated a sequence with OV = 1 and performed

optical flow estimation using the proposed method. We then incremented OV by 1

and repeated the simulation. We noticed that the average error drops rapidly beyond

a certain value of OV and that it remained relatively constant for OV s higher than

that value. Based on this observation we defined the minimum oversampling ratio

OVexp as the OV value at which the magnitude error drops below a certain threshold.

In particular, we chose the threshold to be 0.1 pixels/frame. Once we found the

minimum value of OV , we repeated the experiment for different spatial frequencies

and velocities. The results are plotted in Figure 2.10.

Recall the discussion in the previous subsection (including Figure 2.7) on the min-

imum oversampling factor as a function of spatial bandwidth and velocity needed to

avoid motion aliasing. Note the similarity between the theoretical results in Figure 2.7

and their experimental counterpart in Figure 2.10. This is further illustrated by the
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Figure 2.10: Minimum OV as a function of horizontal velocity vx and horizontal
spatial frequency fx.
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plot of their difference and its histogram in Figure 2.11. This similarity supports our

hypothesis that reduction in motion aliasing is one of the most important benefits of

using high frame rate sequences. The difference in Figure 2.11 can be further reduced

by sampling at a higher rate than �fs,Nyq� to better approximate brightness constancy

and improve the estimation of temporal gradients. It has been shown that gradient

estimators using a small number of taps suffer from poor accuracy when high fre-

quency content is present [58, 59]. In our implementation, we used a 2-tap temporal

gradient estimator, which performs accurately for temporal frequencies ft < 1
3

as sug-

gested in [58]. Thus we need to sample at a rate higher than 1.5 times the Nyquist

temporal sampling rate. Choosing an OV curve that is 1.55 times the Nyquist rate

(i.e., �1.55fs,Nyq�), in Figure 2.12 we plot the difference between the OVexp curve in

Figure 2.10 and the OV curve. Note the reduction in the difference achieved by the

increase in frame rate.
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Figure 2.11: Difference between the empirical minimum OV and OV corresponding
to the Nyquist rate.

We also investigated the effect of varying OV and motion aliasing on accuracy

using the synthetically generated image sequences presented in Subsection 2.2.2. Fig-

ure 2.13 plots the average angular error of the optical flow estimates using the pro-

posed method for OV between 1 and 14. The synthetic test sequence had a global

displacement of 5 pixels/frame at OV = 1. As OV was increased, motion aliasing
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Figure 2.12: Difference between the empirical minimum OV and OV corresponding
to the 1.55 times the Nyquist rate.

and the error due to temporal gradient estimation decreased, leading to higher accu-

racy. The accuracy gain resulting from increasing OV , however, levels off as OV is

further increased. This is caused by the decrease in sensor SNR due to the decrease

in exposure time and the leveling off of the reduction in motion aliasing. For this

example sequence, the minimum error is achieved at OV = 6, where displacements

between consecutive high-speed frames are approximately 1 pixel/frame.

To investigate the effect of motion aliasing, we also estimated the energy in the

image that leads to motion aliasing. Note that since the sequence has global motion

with constant velocity, the temporal bandwidth of the sequence can be estimated

as Bt = 5Bx + 5By by assuming the knowledge of initial estimates of vx = vy = 5

pixels/frame. Thus, motion aliasing occurs for spatial frequencies {fx, fy} that satisfy

the constraint fx + fy > OV/10. By using 2D-DFT of the first frame and this

constraint, we calculated the energy in the sequence that is motion aliased for different

OV s. Figure 2.14 plots the average angular error versus the energy that is motion

aliased. Each point corresponds to an OV value and it is clear that the performance

of the proposed OFE method is largely influenced by the presence of motion aliasing.

This confirms our hypothesis that motion aliasing significantly affects the perfor-

mance of optical flow estimation and that a key advantage of high frame rate is the
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Figure 2.13: Average angular error versus oversampling factor (OV ).
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reduction of motion aliasing. Also, this example shows that with initial estimates of

velocities, we can predict the amount of energy in the image that will be aliased. This

can be used to identify the necessary frame rate to achieve high accuracy optical flow

estimation for a specific scene.

2.4 Extension to handle brightness variation

In the previous sections we described and tested a method for obtaining high accuracy

optical flow at a standard frame rate using a high frame rate sequence. We used the

Lucas-Kanade method to estimate optical flow at high frame rate and then accumu-

lated and refined the estimates to obtain optical flow at standard frame rate. The

Lucas-Kanade method assumes brightness constancy, and although high frame rate

makes this assumption more valid, in this section we show that brightness variations

can be handled more effectively using other estimation methods. Specifically, we show

that by using an extension of the Haussecker [64] method, temporal oversampling can

benefit optical flow estimation even when brightness constancy assumption does not

hold.

There have been many proposals of how to handle the case when the brightness

constancy assumption does not hold [64, 62, 63, 65, 66, 67, 68]. It has been shown

that a linear model with offset is sufficient to model brightness variation in most

cases [62, 63, 68]. For example, Negahdaripour et al. developed an OFE algorithm

based on this assumption and demonstrated good performance [62, 63]. Haussecker et

al. developed models for several cases of brightness variation and described a method

for coping with them [64]. We will use Haussecker’s framework with the assumption

of linear brightness variation for estimating optical flow at high frame rate.

2.4.1 Review of models for brightness variation

We begin with a brief summary of the framework described in [64]. The brightness

change is modeled as a parameterized function h, i.e.,

i(x(t), t) = h(i0, t, a),
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where x(t) denotes the path along which brightness varies, i0 = i(x(0), 0) denotes the

image at time 0, and a denotes a Q-dimensional parameter vector for the brightness

change model. The total derivative of both sides of this equation yields

(∇i)Tv + it = f(i0, t, a), (2.3)

where f is defined as

f(i0, t, a) =
d

dt
[h(i0, t, a)].

Note that when brightness is constant, f = 0 and Equation 2.3 simplifies to the

conventional brightness constancy constraint. The goal is to estimate the parameters

of the optical flow field v and the parameter vector a of the model f . Remembering

that h(i0, t, a = 0) = i0, we can expand h using the Taylor series around a = 0 to

obtain

h(i0, t, a) ≈ i0 +

Q∑
k=1

ak
∂h

∂ak

.

Thus, f can be written as a scalar product of the parameter vector a and a vector

containing the partial derivatives of f with respect to the parameters ak, i.e.,

f(i0, t, a) =

Q∑
k=1

ak
∂f

∂ak

= (∇af)Ta. (2.4)

Using Equation 2.4, Equation 2.3 can be expressed as

cTph = 0,

where

c = [(∇af)T , (∇i)T , it]
T

ph = [−aT ,vT , 1]T .

Here, the (Q + 3)-dimensional vector ph contains the flow field parameters and the

brightness parameters of h. The vector c combines the image derivative measurements
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and the gradient of f with respect to a. To solve for ph, we assume that ph remains

constant within a local space-time neighborhood of N pixels. The constraints from

the N pixels in the neighborhood can be expressed as

Gph = 0,

where G = [c1, ..., cN ]T . The estimate of ph can be obtained by a total least squares

(TLS) solution.

2.4.2 Using Haussecker method with high frame rate

We assume a linear model with offset for brightness variation which yields f = a1 +

a2i0. We use Haussecker’s method to estimate vx, vy, a1 and a2 for every high-speed

frame. We then accumulate and refine vx, vy, a1 and a2 in a similar manner to the

method described in Section 2.2 to obtain optical flow estimates at a standard frame

rate.

The parameters vx and vy are accumulated and refined exactly as before, and we

now describe how to accumulate and refine a1 and a2 along the motion trajectories. To

accumulate a1 and a2, we first define â1(k,l) and â2(k,l) to be the estimated brightness

variation parameters between frames k and l along the motion trajectory. We estimate

â1(k−1,k) and â2(k−1,k) and assume that â1(0,k−1) and â2(0,k−1) are available from the

previous iteration. Since f = a1 + a2i0, we model the brightness variation such that

ik−1 − i0 = â1(0,k−1) + â2(0,k−1)i0

ik − ik−1 = â1(k−1,k) + â2(k−1,k)ik−1,

for each pixel in frame 0, where ik is the intensity value for frame k along the motion

trajectory. By arranging the terms and eliminating ik−1, we can express ik in terms

of i0 such that

ik = â1(k−1,k) + (1 + â2(k−1,k))(â1(0,k−1) + (1 + â2(0,k−1))i0). (2.5)



CHAPTER 2. OPTICAL FLOW ESTIMATION 34

Let ã1(0,k) and ã2(0,k) denote the accumulated brightness variation parameters between

frames 0 and k along the motion trajectory. Therefore, by definition, ik = ã1(0,k)+(1+

ã2(0,k))i0 and by comparing this equation with Equation 2.5, accumulated brightness

variation parameters are obtained by

ã1(0,k) = â1(k−1,k) + (1 + â2(k−1,k))â1(0,k−1)

ã2(0,k) = â2(k−1,k) + (1 + â2(k−1,k))â2(0,k−1).

Frame k̂ is obtained by warping frame 0 according to our initial estimate of optical

flow between frames 0 and k and changing the brightness according to ã1(0,k) and

ã2(0,k), i.e.,

Frame k̂ = (1 + ã2(0,k))ik(x − ṽx(0,k), y − ṽy(0,k)) + ã1(0,k),

where ṽx(0,k) and ṽy(0,k) are the accumulated optical flow estimates between frames 0

and k. By estimating the optical flow and brightness variation parameters between

original frame k and motion-compensated frame k̂, we can estimate the error be-

tween the true values and the initial estimates obtained by accumulating. For the

optical flow, we estimate the error and add it to our initial estimate, whereas for the

brightness variation parameters, we perform the refinement as

â1(0,k) = a1∆ + (1 + a2∆)ã1(0,k)

â2(0,k) = a2∆ + (1 + a2∆)ã2(0,k),

where a1∆ and a2∆ are the brightness variation parameters between frames k and

k̂. The accumulation and refinement stage is repeated until we have the parameters

between frames 0 and OV .

We tested this method using the sequences described in Subsection 2.2.2 but

with global brightness variations. In these sequences, however, the global brightness

changed with a1(0,OV ) = 5 and a2(0,OV ) = 0.1. We performed optical flow estimation on

the OV = 1 sequences using the Haussecker’s method and on the OV = 4 sequences

using our extended method. The resulting average angular errors and magnitude
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errors between the true and the estimated optical flows are given in Table 2.3.

Haussecker’s method (OV = 1) The proposed method (OV = 4)
Scene

Angular error Magnitude error Angular error Magnitude error
1 5.12◦ 0.25 3.33◦ 0.15
2 6.10◦ 0.32 2.99◦ 0.18
3 7.72◦ 0.54 2.82◦ 0.18

Table 2.3: Average angular error and magnitude error using Haussecker’s method
with OV = 1 sequences versus proposed extended method with OV = 4 sequences.

These results demonstrate that using high frame rate, high accuracy optical flow

estimates can be obtained even when brightness varies with time, i.e., when brightness

constancy assumption does not hold. Furthermore, with this extension, we have also

demonstrated that our proposed method can be used with OFE algorithms other than

the Lucas-Kanade algorithm.

2.5 Summary

In this chapter, we described a method for improving the optical flow estimation

accuracy for video at a conventional standard frame rate, by initially capturing and

processing the video at a higher frame rate. The method begins by estimating the

optical flow between frames at the high frame rate, and then accumulates and refines

these estimates to produce accurate estimates of the optical flow at the desired stan-

dard frame rate. The method was tested on synthetically generated video sequences

and the results demonstrate significant improvements in OFE accuracy. Also, with

sinusoidal input sequences, we showed that reduction of motion aliasing is an impor-

tant potential benefit of using high frame rate sequences. We also described methods

to estimate the required oversampling rate to improve the optical flow accuracy, as

a function of the velocity and spatial bandwidth of the scene. The proposed method

can be used with other OFE algorithms besides the Lucas-Kanade algorithm. For

example, we began with the Haussecker algorithm, designed specifically for optical
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flow estimation when the brightness varies with time, and extended it with the pro-

posed method to work on high frame rate sequences. Furthermore, we demonstrated

that our extended version provides improved accuracy in optical flow estimation as

compared to the original Haussecker algorithm operating on video captured at the

standard frame rate.



Chapter 3

Gain Fixed Pattern Noise

Correction

3.1 Introduction

Most image sensors have linear transfer function such that the pixel intensity value i

as a function of its input signal s, e.g., photocurrent density [60], can be expressed as

i = hs + ios, (3.1)

where h is the gain factor and ios is the offset, which includes the dark signal as

well as the offset due to the amplifiers and buffers. Since all the pixels do not have

the same gain h and offset ios, image data read out of the image sensor pixel array

are not uniform even under uniform illumination. Figure 3.1 illustrates an image

(with its histogram) obtained by capturing 100 frames under uniform illumination

and averaging them to significantly reduce the temporal noise. Note that the image

has spatial variation even when there is little temporal noise. Fixed pattern noise

(FPN) is this spatial variation of output pixel values under uniform illumination.

FPN is caused by variations in pixel gains and offsets due to device mismatches and

process parameter variations across an image sensor. It is a major source of image

quality degradation especially in CMOS image sensors [72, 73]. In a CCD sensor,

37
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since all pixels share the same output amplifier, FPN is mainly due to variations in

photodetector area and dark current. In a CMOS image sensor, however, pixels are

read out over different chains of buffers and amplifiers each with different gain and

offset, resulting in relatively high FPN.
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Figure 3.1: An image and its histogram of uniform illumination illustrating FPN

FPN can be divided into offset FPN and gain FPN. Offset FPN is due to pixel

to pixel variations in ios and can be significantly reduced by correlated-double sam-

pling (CDS). CDS first captures a frame with no exposure time (immediately after

pixel reset) and then subtracts it off the desired frame with proper exposure time.

Gain FPN is caused by variations in the gain factor h. While offset FPN can be

significantly reduced using correlated double sampling (CDS), no method exists for

effectively reducing gain FPN. In [74] a method is proposed for reducing gain FPN

by characterizing the sensor’s pixel gains after manufacture and storing the gains in

a lookup table that is subsequently used to perform the correction. A problem with

this method is that gain FPN changes with temperature and aging, making a “static”

gain lookup table approach inaccurate. Another method would be to characterize the

sensor’s pixel gains before each capture. This is not feasible since characterizing gain

FPN requires many captures at different uniform illuminations.

In this chapter, we present a method to estimate and correct gain FPN using

a video sequence and its optical flow. This method can be used in digital video
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or still cameras without requiring multiple captures of uniformly illuminated scenes

at different intensities [70, 71]. The key idea of the method is to assume brightness

constancy along the motion trajectories and use this information to estimate the gains

for each pixel. For example, when a light intensity patch falls on a pixel at t = 0

and on another pixel at t = 1, we can estimate the ratio of the gains at these two

pixels. By gathering the ratio of gains for all the pixels in the image sensor and for

multiple frames, we can estimate the gain for all the pixels in the image sensor. Since

this method tracks the intensity variations along the motion trajectories due to gain

FPN, it requires global motion between frame which needs to be estimated before

this method is applied. Note that the required motion in the scene can be provided

by simply panning the camera during capture.

In the following section, we describe the image and FPN model used throughout

the chapter. In Section 3.3, we describe our algorithm for estimating and correct-

ing gain FPN and illustrate its operation via simple 1D examples. In Section 3.4,

we show simulation results using a synthetically generated sequence and its optical

flow. We then show experimental results using a real video sequence taken with our

experimental imaging system [75].

3.2 Image and fixed pattern noise model

In this chapter, we only consider gain FPN and assume that offset FPN has been

canceled with CDS. After eliminating the offset term in Equation 3.1 and including

gain variations, we obtain

i(x, y, t) = i0(x, y, t) + ∆i(x, y, t)

= (h0 + ∆h(x, y))s(x, y, t)

= (1 +
∆h(x, y)

h0

)i0(x, y, t)

= a(x, y)i0(x, y, t),

where i0(x, y, t) is the ideal intensity value at pixel (x, y) and time (frame) t, h0 is

the nominal gain factor, and ∆h(x, y) is the deviation in gain for pixel (x, y). Gain
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FPN can be represented as the pixel to pixel variation of a(x, y) and its magnitude is

σ∆h/h0. Although gain FPN can slowly vary with temperature and aging, we assume

here that a(x, y) is constant while capturing several frames with the imager. Note

that a(x, y) = 1 for all (x, y) in an ideal sensor having no gain FPN.

To quantify the effect of different device parameters on the gain FPN, we define

parameter values Z1, Z2, ..., Zk and express Zi = zi + ∆Zi where zi the nominal value

of the device parameter and ∆Zi is the variation of Zi. Thus the variation of gain

∆H can be represented as

∆H =
k∑

i=1

∂h

∂zi

· ∆Zi. (3.2)

For Passive Pixel Sensor (PPS), Zis are photodiode area AD and the feedback

capacitance Cf in the column opamp. For Active Pixel Sensor (APS), Zis are AD,

photodiode capacitance CD, the gain of the source followers Asf and the gain of ADC

AADC (if there are more than 1 ADC). For Digital Pixel Sensor (DPS), Zis are AD,

CD and AADC .

Some device parameters contribute to individual pixel gain non-uniformity whereas

some others contribute to row or column gain non-uniformity. Row or column com-

ponent appears as stripes in the image and can result in significant image quality

degradation. Thus, we can divide ∆H in Equation 3.2 into pixel gain FPN compo-

nent ∆HX , column gain FPN component ∆HY and row gain FPN component ∆HZ .

This model will later be used in Section 3.4 to synthetically generate video sequence

corrupted by gain FPN.

We assume brightness constancy, which implies that brightness is constant along

each motion trajectory. Brightness constancy is commonly assumed in the devel-

opment of many video processing and computer vision algorithms [50, 48]. Thus, if

F +1 frames are captured using an M×N pixel image sensor, the ideal pixel intensity

value at t, i0(x, y, t), can be expressed in terms of the ideal pixel intensity at t = 0,
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j(x, y) = i0(x, y, 0), as

i0(x+dx(x, y, t), y+dy(x, y, t), t) = j(x, y), for x = 1, . . . , M, y = 1, . . . , N, and t = 0, . . . , F,

(3.3)

where dx(x, y, t) and dy(x, y, t) are the displacements (optical flow) between frame 0

and t for pixel (x, y) in frame 0. Note that by definition dx(x, y, 0) = dy(x, y, 0) = 0.

This model is illustrated in Figure 3.2, which depicts the pixel locations of a moving

patch of constant intensity in each frame. Under this ideal model the pixel output

values within the patch in all frames are equal.

When gain FPN and temporal noise are added to the ideal model, the pixel

intensity value i(x, y, t) becomes

i(x + dx, y + dy, t) = a(x + dx, y + dy)j(x, y) + N(x + dx, y + dy, t), (3.4)

where N(x, y, t) is the additive temporal noise for pixel (x, y) at time t. For notational

simplicity, we omitted the index (x, y, t) in dx and dy. Note that the gain FPN

component a(x, y) is constant over time t. Thus in the example in Figure 3.2, the

pixel values within the patch would be different. However, note that if we ignore

temporal noise, the ratio of the pixel output values within the patch equals the ratio

of the gains at those tracked pixel locations. These ratios can then be used to correct

for gain FPN.

10 F

t

Figure 3.2: Sequence of frames with brightness constancy.
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3.3 Description of the algorithm

The goal here is to estimate j(x, y) from i(x, y, 0), . . . , i(x, y, F ) in the presence of

temporal noise and gain FPN. To do so, we formulate the problem as follows. Let

ĵ(x, y | t) be a linear estimate of j(x, y) obtained from i(x, y, t) of the form

ĵ(x, y | t) = k(x + dx, y + dy)i(x + dx, y + dy, t), (3.5)

where k(x, y) is a coefficient function that we need to estimate. Because of the

brightness constancy assumption, j(x, y) is constant over time, and hence ĵ(x, y | t)

does not depend on time. Using this fact, we find k(x, y) that minimizes the mean

square error (MSE) between ĵ(x, y | 0) and ĵ(x, y | t). To reduce the computational

complexity of estimating k(x, y), we divide the image into non-overlapping blocks and

independently estimate k(x, y) for each block. Thus to estimate k(x, y) for pixels in

block B, we minimize the MSE function

EB =
F∑

t=1

∑
(x,y)∈B

(ĵ(x, y | 0) − ĵ(x, y | t))2 (3.6)

=
F∑

t=1

∑
(x,y)∈B

(k(x, y)i(x, y, 0) − k(x + dx, y + dy)i(x + dx, y + dy, t))
2. (3.7)

In the following subsection, we describe how the estimate is found for the case when

the displacements are integer valued. In Subsection 3.3.2, we extend the discussion

to the non-integer case.

3.3.1 Integer displacements

Let R be the set of pixel locations (x + dx, y + dy) along the motion trajectories for

(x, y) ∈ B, and nB and nR be the number of pixels in B and R, respectively. We

define the nR-vector k to consist of the elements k(x, y) in R beginning with the

elements in the block B. Warping k(x, y) to form k(x+dx, y +dy) can be represented

by multiplying the vector k with an nB ×nR matrix T (t), which is formed as follows.
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When brightness at the pixel location i in frame 0 moves to pixel location j in frame

t, the ith row of T (t) is assigned a 1 to its jth element and 0 to all its other elements.

Let I(t) be the nB×nB diagonal matrix whose diagonal elements are i(x+dx, y+dy, t)

for (x, y) ∈ B. We can now rewrite Equation 3.7 in a matrix form as

EB =
F∑

t=1

‖
[
I(0) 0nB×(nR−nB)

]
k − I(t)T (t)k‖2, (3.8)

where

T (t)ij =

{
1, when ith pixel moves to jth pixel, 1 ≤ i ≤ nB and 1 ≤ j ≤ nR

0, otherwise.

(3.9)

To obtain an unbiased estimate of ĵ(x, y | t), we require that 1Tk = nR, where

1 =
[
1 1 . . . 1

]T

. Thus, we wish to minimize

EB =
F∑

t=1

‖(
[
I(0) 0nB×(nR−nB)

]
− I(t)T (t))k‖2, (3.10)

subject to 1Tk = nR.

This is a quadratic optimization problem with a linear constraint and thus has a

unique global optimum, which can be found using standard methods, e.g., steepest

descent or conjugate gradient [76]. Optionally, to make use of the fact that the

elements of k are close to 1, a regularization term λ‖k − 1‖2 may be added to EB.

This becomes useful when temporal noise is high.

After estimating k(x, y) for the entire image, one block at a time, the gain FPN

corrected value for each pixel (x, y) can be computed as

ĵ(x, y, 0) = k(x, y)i(x, y, 0)

= a(x, y)k(x, y)i0(x, y, 0) + k(x, y)N(x, y, 0).

We use ĵ(x, y|0) over other ĵ(x, y|t)s because it does not suffer from interpolation error

when the displacements are non-integers (as discussed in the following subsection).
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Note also that this method does not result in higher temporal noise since the average

value of the k(x, y)s is 1.

We illustrate our method via the simple 1-D example in Figure 3.3. In this exam-

ple, we track brightness at 4 pixel locations in frame 0 and correct gain FPN for 6

pixel locations. Thus, we have nB = 4, F = 2 and nR = 6. The numbers on the left

side are the ideal pixel intensities and the ones on the right side are the pixel inten-

sities when gain FPN is included. Each arrow represents the motion for each pixel

between consecutive frames. We assume pixel gains of 0.95, 1.02, 1.08, 0.97, 0.95, 1.03

and ignore temporal noise. Thus,

138 150 125 100

138 150 125 100

100125150138

153 135 97

162

103

95

131.1

0.95 1.02 1.08 0.97 0.95 1.03

Sensor

Sensor gains

140.76 121.25

149.04 118.75145.5

i0(x, t) i(x, t)

t = 0

t = 1

t = 2

Figure 3.3: 1-D case simple example when the displacements are integers.
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I(0) =


131.1 0 0 0 0 0

0 153 0 0 0 0

0 0 135 0 0 0

0 0 0 97 0 0

 , I(1) =


140.76 0 0 0

0 162 0 0

0 0 121.25 0

0 0 0 95

 ,

I(2) =


149.04 0 0 0

0 145.5 0 0

0 0 118.75 0

0 0 0 103

 , T (1) =


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

 ,

T (2) =


0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 .

Solving Equation 3.10, we obtain

k∗ =
[
1.0503 0.9782 0.9239 1.0286 1.0503 0.9687

]T

.

We can now correct gain FPN using Equation 3.11 and we obtain

I(0)k∗ =
[
137.68 149.66 124.72 99.77

]T

= 0.998
[
138 150 125 100

]T

.

Note that the gain FPN have been completely removed.

3.3.2 Non-integer displacements

The method described in the previous section can be extended to the more realistic

non-integer displacement case depicted in Figure 3.4. The solid lines in the figure

represent the pixel grid. The shaded area A is a brightness patch that covers a pixel

in frame 0 and moves to location B in frame t. Equation 3.5 cannot be directly

used in this case since location B overlaps with several pixels due to the non-integer
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displacement of A and k(x + dx, y + dy) and i(x + dx, y + dy, t) were only defined for

integer valued x+dx and y +dy. To extend our method to non-integer displacements

we use spatial interpolation to estimate the intensity values at the non-integer patch

locations and define I(t) matrices using the interpolated values ĩ(x + dx, y + dy, t)

instead of pixel intensities.

To define the gain FPN correction coefficient k(x + dx, y + dy) at the non-integer

location B note that B partially overlaps with 4 pixels with possibly different gain

FPN values. We define the gain FPN of B as the weighted average of the four pixel

gain FPN values, where the weight for a pixel is the fraction of its overlap area with

B. The gain FPN correction coefficient k(x + dx, y + dy) can be similarly defined as

k(x + dx, y + dy) =
1∑

i=0

1∑
j=0

Cijk(x + 
dx� + i, y + 
dy� + j), (3.11)

where

C =

[
(1 − α)(1 − β) (1 − α)β

α(1 − β) αβ

]
α = dx − 
dx�, β = dy − 
dy�.

The index (x, y, t) in C, 
dx�, 
dy�, α and β are omitted for notational simplicity.

With these modifications, we use Equation 3.5 to obtain the estimate of the ideal

pixel intensity. The MSE function to be minimized is expressed in the matrix form

of Equation 3.10 using the modified definitions of ĩ(x+dx, y +dy, t) and k(x+dx, y +

dy). In this case I(t) is the nB × nB diagonal matrix whose diagonal elements are

ĩ(x + dx, y + dy, t). When brightness at pixel location (x, y) in frame 0 moves to the

location (x + dx, y + dy) in frame t, the row of the T (t) matrix that corresponds to

pixel location (x, y), is formed by assigning Cijs to the elements corresponding to

pixel locations (x + 
dx� + i, y + 
dy� + j) and 0s otherwise.

We illustrate the non-integer displacement case with the simple 1D example in

Figure 3.5. In this example, we track brightness at 4 pixel locations and correct gain

FPN for 5 pixels. Thus, nB = 4, F = 2 and nR = 5. Note that the magnitude of
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B

A

α

β

Figure 3.4: Non-integer dx and dy displacements.

the displacements between frames 0 and 1 is 0.5 pixel and thus T (1) is no longer

a permutation matrix. Since half of the brightness patch at the first (left most)

pixel moves to the first pixel and the other half moves to the second pixel, we set

T (1)11 = T (1)12 = 0.5. Other rows of T (1) can be defined similarly. Also, since

i(x + dx, y + dy, 1) is not defined for non-integer dx and dy, the diagonal elements of

I(1) can be obtained by interpolating i(x, y, 1) to find ĩ(x + dx, y + dy, 1). In this

example, I(1) is obtained by performing bilinear interpolation and temporal noise is

ignored.

138 150 125 100

138 150 125 100

138 150 125 100

153 106

141 127.5 97

132.8 135.36 140.25 109.13 92.750.971.01 0.94 1.02 1.06

Sensor gains

Sensor

139.38

129.72 121.25

i0(x, t) i(x, t)

t = 0

t = 1

t = 2

Figure 3.5: 1-D case simple example when the displacements are non-integers.
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I(0) =


139.38 0 0 0 0

0 141 0 0 0

0 0 127.5 0 0

0 0 0 97 0

 , I(1) =


134.1 0 0 0

0 137.8 0 0

0 0 124.7 0

0 0 0 100.9

 ,

I(2) =


129.72 0 0 0

0 153 0 0

0 0 121.25 0

0 0 0 106

 , T (1) =


0.5 0.5 0 0 0

0 0.5 0.5 0 0

0 0 0.5 0.5 0

0 0 0 0.5 0.5

 ,

T (2) =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 .

Solving Equation 3.10, we obtain

k∗ =
[
0.9737 1.0465 0.9879 1.0389 0.9530

]T

.

We can now correct gain FPN using Equation 3.11 and we obtain

I(0)k∗ =
[
135.73 147.56 125.96 100.77

]T

.

Note that unlike in the integer displacement example, where gain FPN was com-

pletely corrected for, in this example gain FPN cannot be completely corrected due

to interpolation errors.

3.4 Results

To test our method, we applied it to synthetically generated video sequences so that

the amount of gain FPN and displacement between frames can be controlled, and the

performance of gain FPN correction can be measured. We generated the sequences
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using a realistic image sensor model, which included motion blur, read noise, shot

noise, and gain FPN. The following image sensor parameters are used: conversion

gain of 32.5µV/e−, read noise of 50 electrons, voltage swing of 1V, 8-bit ADC, pixel

gain variation of 5%, i.e.,
σHpix

h0
= 0.05. Detailed description of how these sequences

are generated is provided in Chapter 2. We measure performance by computing the

mean square error (MSE) between the noise-free image and the gain FPN corrected

image and comparing it to the MSE between the noise-free image and the input image

before gain FPN correction (see Figure 3.6).

Sequence
Generate Gain FPN

Correction

Add temporal noise
and Gain FPN

MSE before

MSE after

Figure 3.6: Simulation setup.

Original scene Optical flow

Figure 3.7: Original scene and its optical flow.

The original image with no FPN or temporal noise is shown in Figure 3.7 together
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with its optical flow. Figure 3.8 shows one frame of each sequence before and after

gain FPN correction using block size of 5 × 5. After gain FPN correction, the MSE

is reduced from 32.38 to 11.54 (a reduction of 4.48dB). Although gain FPN is not

totally removed due to temporal noise, interpolation error and motion blur, its effect

is far less visible as can be seen from the figure. The slight blockiness in the gain

FPN corrected image can be reduced by using larger block size at the cost of higher

computational complexity.

Before correction (MSE=32.38)

After correction (MSE=11.54)

Figure 3.8: Images before and after correction with 5% of pixel gain variation.

Most CMOS image sensors suffer from column FPN due to column-wise readout
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circuits [60] in addition to pixel FPN. We tested our method assuming both are present

with pixel gain variations of 3%, i.e.,
σHpix

h0
= 0.03, and column gain variations of 4%,

i.e.,
σHcol

h0
= 0.04. We assume that column and pixel components are uncorrelated [73].

Figure 3.9 shows one frame of each sequence before and after gain FPN correction

again using block size of 5× 5. After gain FPN correction, the MSE is reduced from

31.17 to 13.49 (a reduction of 3.64dB).

Before correction (MSE = 31.17)

After correction (MSE = 13.49)

Figure 3.9: Images before and after correction with 3% of pixel and 4% of column
gain variation.
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We also applied our method to real video sequences captured using an experimen-

tal high speed imaging system [75]. The system is based on the DPS chip described

in [40] and can operate at frame rates of up to 1400 frames/s. The sequence was

obtained by shaking an eye chart in front of the camera and capturing 5 frames at

200 frames/s. We estimated optical flow of the sequence using the method described

in Chapter 2.

Figure 3.10 shows one frame of each sequence before and after gain FPN correction.

Gain FPN correction was again performed with block size of 5 × 5. Note that the

horizontal lines in the image before correction, which are caused by a systematic

difference between the gain of pixels in even and odd lines due to vertical mirroring

in pixel layout [40], are removed after FPN correction. Also note that FPN correction

did not result in any image distortion or blurring. To clearly illustrate the effect of

gain FPN correction, zoomed in images are shown in Figure 3.11.

Before correction After correction

Figure 3.10: Images before and after correction for real sequence.
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Before correction After correction

Figure 3.11: Zoomed in images before and after correction for real sequence.

3.5 Complexity

In this section, we discuss the computational complexity issues when correcting for

gain FPN from a video sequence and its optical flow. We assume that the optical

flow has already been estimated and we will not discuss the complexity of obtaining

optical flow. Also, as can be seen in Equation 3.11, once we have calculated gain FPN

correction coefficient, it is straight-forward to obtain the gain FPN corrected image.

Thus, we will primarily discuss the complexity of calculating the coefficients which

are obtained by solving Equation 3.10.

One can directly solve Equation 3.10 using the Lagrange multiplier method. This,

however, requires calculating the inverse of an (nR + 1)× (nR + 1) matrix, which has

high computational complexity and can be numerically unstable. For example, even

when nR = 16, we have to calculate the inverse of a 17×17 matrix which is not trivial.

To alleviate the computational burden, we used an iterative method to obtain k∗. We

examined the steepest descent and conjugate gradient method, which gave results that

are very close to the global optimum with less than 10 iterations.

The derivation in Section 3.3 was for a block in the image and we did not assume

anything about the size of the block. The block can be as large as the image itself,

but that would require too many computations. To investigate the effect of the block

size on the complexity, we calculate the number of computations per pixel required to

obtain k(x, y). For each block with nB pixels, calculation of k(x, y) requires nR(2n2
R +
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nBFnR + 2(p − 1)nR + 7p) operations, where nR is the number of elements in the

set of pixel locations along the motion trajectories for the pixels in the block and

p is the number of iterations. Note that the number of operations depends on nR

which depends on the optical flow of the sequence. With the assumption that pixels

do not move in or out of the block i.e., nB = nR, the number of operations/pixel

to obtain gain FPN correction coefficients versus nB is plotted in Figure 3.12 for

F = 4. We can see that the number of computations required increases as the block

size increases. Although smaller block sizes result in lower complexity, it results in

poorer performance. This is because smaller blocksizes cannot take advantage of more

information provided by neighboring pixels that are outside of the block. We have

found that using 5 × 5 (i.e., nB = 25) size blocks results in a good trade-off between

the computational complexity and the performance of the algorithm.
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Figure 3.12: Number of operations/pixel versus nB when 5 frames are used.
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3.6 Summary

This chapter presented a method for gain FPN correction using a video sequence and

its estimated optical flow. Conceptually, the method can be thought of as digital

CDS that cancels gain FPN rather than offset FPN. It can be used in a digital

video or still camera by taking a video sequence with motion prior to capture and

using it to estimate gain FPN. The sequence is then used to estimate pixel gains

by iteratively minimizing the sum of the squared brightness variations along the

motion trajectories. To reduce complexity we divide the pixel array into block’s, as

is commonly done in video coding, and perform the estimation separately for each

block. We found that block size of 5 × 5 provides a reasonable trade-off between

complexity and performance. Using iterative minimization methods also allows us

to lower computational requirements and reduce gain FPN incrementally by utilizing

previously computed k∗s as initial estimates instead of starting from k = 1. We

tested our gain FPN correction method on synthetically generated sequences and

demonstrated significant gain FPN reduction even in the presence of motion blur and

temporal noise.



Chapter 4

Hardware and Implementation

Issues

In this chapter, we discuss hardware implementation issues of high speed CMOS

imaging systems. We describe a 352×288 pixel CMOS Digital Pixel Sensor chip with

per-pixel single-slope ADC and 8-bit dynamic memory in a standard digital 0.18µm

CMOS process. The chip performs “snap-shot” image acquisition at continuous rate

of 10, 000 frames/s or 1 Gpixels/s. We then explore the limits of integrating memory

and processing with a CMOS image sensor in 0.18µm process and below. We show

that the integration of an entire video camera system on a chip is not only feasible

at 0.18µm process, but in fact underutilizes the possible on-chip processing power.

Further, we show that the on-chip processing power and memory are sufficient to

perform applications such as optical flow estimation.

4.1 A 10,000 frames/s Digital Pixel Sensor (DPS)

In this section, a 352×288 CMOS DPS with per-pixel ADC and digital memory which

we fabricated in a standard digital 0.18µm CMOS technology is presented. The goals

of our design are: (i) to demonstrate a DPS with bit-parallel ADC and memory per

pixel (our earlier implementations [77, 78, 43] employed a shared bit-serial ADC and

a 1-bit latch per 2×2 block of pixels), (ii) to evaluate the scalability and performance

56
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of image sensors implemented in a standard digital 0.18 µm CMOS process, (iii) to

demonstrate the speed potential of DPS, in particular, to reach or exceed continuous

10, 000 frames/s operation and sustain 1 Gpixels/s throughput, and (iv) to provide

a platform for experimenting with algorithms and circuits that exploit high speed

imaging and embedded pixel-level digital memory.

The DPS architecture described in this chapter fulfills the requirements of high

speed imaging with practically no limit on array size. It performs fully pixel-parallel

image acquisition. Pixel reset is performed in parallel for all pixels and the reset

duration is completely programmable, permitting higher shutter speeds that are in-

dependent of frame rates. The massively-parallel per-pixel A/D conversion scheme

demonstrated here results in a high digitization rate that is independent of array

size. This is a key advantage of DPS over APS employing column-level, chip-level, or

off-chip ADCs where digitization rates do not scale linearly with the number of pixels

in the array.

ADC Memory
n Digital

Readout
m

DPS Pixel

Figure 4.1: Simple DPS pixel block diagram.

In this section, we first describe the DPS chip architecture and main character-

istics. In Section 4.1.2, we describe the details of the pixel design. In Section 4.1.3,

we discuss the chip operation including the different imaging modes. Finally, in Sec-

tion 4.1.4, we present the chip characterization results including ADC performance,

QE, dark current, noise, digital noise coupling, and sample images.

4.1.1 DPS chip overview

A photomicrograph of the DPS chip is shown in Figure 4.2 and the main chip charac-

teristics are listed in Table 4.1. The chip contains 3.8 million transistors on a 5×5mm



CHAPTER 4. HARDWARE AND IMPLEMENTATION ISSUES 58

die. The sensor array is 352× 288 pixels in size, conforming to the CIF format. Each

pixel is 9.4µm on a side and contains 37 transistors including a photogate, transfer

gate, reset transistor, a storage capacitor, and an 8-bit single-slope ADC with an 8-bit

3T-DRAM. The chip also contains test structures that we used for detailed character-

ization of APS and DPS pixels [79]. The test structures can be seen in upper center

area of the chip.

Figure 4.2: DPS Chip photomicrograph. The chip size is 5 × 5mm.

Figure 4.3 shows a block diagram of the DPS chip. At the center is the sensor

array. The periphery above the sensor core contains an 8-bit gray code counter, an

auxiliary code input, and multiplexers and tri-state column data drivers that are

used to write data into the memory within the pixel array. The column multiplexers

can be used to substitute arbitrary patterns for the standard gray code during data

conversion. This facilitates the use of nonlinear ADC transfer functions, for example,



CHAPTER 4. HARDWARE AND IMPLEMENTATION ISSUES 59

Technology 0.18µm 5-metal CMOS
Die size 5 × 5 mm
Array size 352×288 pixels
Number of transistors 3.8 million
Readout architecture 64-bit (167 MHz)
Max output data rate > 1.33 GB/s
Max continuous frame rate > 10, 000 frames/s
Max continuous pixel rate > 1 Gpixels/s
Pixel size 9.4 × 9.4µm
Photodetector type nMOS Photogate
Number of transistors/pixel 37
Sensor fill factor 15%

Table 4.1: Chip characteristics.

for compression of dynamic range and contrast stretching. To the left of the sensor

array is the readout control periphery that includes a row select pointer for addressing

the pixel-level memory during readout. To the right of the sensor array is the bias

generation and power-down circuits, which are used to digitally control the per-pixel

ADC and memory sense-amp biases. The analog ramp signal input to the array

needed for the per-pixel ADCs is supplied by an off-chip DAC.

Below the sensor core is the digital readout circuits that include column sense-

amps for reading the pixel-level memory and an output multiplexing shift register.

The pixel values are read out of the memory one row at a time using the row select

pointer and column sense-amps. Each row is then buffered and pipelined so that

as one row is being shifted out of the chip the following row is read out of the

memory. A 64-bit wide parallel-in, serial-out shift-register bank was used instead of

a large multiplexer since in a shift register data moves in small increments, reducing

local capacitance and drive circuit performance requirements. With each clock cycle,

eight 8-bit pixel values are read out in a continuous stream with no waits or gaps

between rows. An entirely closed-loop clocking system is used to assure clock and

data integrity. The 64-bit output bus is clocked at 167 MHz for a 1.33 GB/s readout

rate.

In the lower left corner of the chip is the readout control block. Since the chip is
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Figure 4.3: DPS block diagram.
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to be clocked at upwards of 167 MHz, it was important to keep off-chip high speed

controls to a minimum. The control block provides all the signals needed for readout

from a single frame reset followed by a single continuous clock burst. A 6-phase clock

generator using feedback to ensure correct margins is used to drive the shift registers.

During chip testing or experimental operation, the control block can be bypassed and

a set of auxiliary input controls used. Almost all digital circuitry in the periphery of

the chip was designed using static logic to permit arbitrarily low clock rates.

4.1.2 Pixel design

The pixel circuit is shown in Figure 4.4. It consists of a photogate circuit, a compara-

tor and an 8-bit memory. The photogate circuit consists of an nMOS photogate, a

transfer gate, a reset transistor and a sample capacitor. We decided to use a photo-

gate to achieve high conversion gain and because preliminary process data indicated

that native photodiodes have unacceptably high leakage. We implemented the pho-

togate circuit using the standard thick oxide (3.3V) transistors that normally used

in I/O circuits, to avoid the high gate and subthreshold leakage currents of the thin

oxide (1.8V) transistors. Implementing the photogate and reset transistor using thick

oxide transistors also makes it possible to use higher gate voltages than the nominal

1.8V supply to increase voltage swing.

Thick oxide

PG TX

Reset

Vset

Bias1 Bias2

VDD

Ramp

Word

Bit1 Bit8

Photodetector Comparator 8-bit memory

Figure 4.4: Pixel schematic.
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The comparator consists of a differential gain stage, a single-ended gain stage,

followed by a CMOS inverter. It is designed to provide gain sufficient for 10-bits of

resolution with an input swing of 1V and a worst case settling time of 80ns. This

provides the flexibility to perform 8-bit A/D conversion over a 0.25V range in under

25µs, which is desirable for high speed and/or low light operation.

The pixel-level memory was implemented using 3T dynamic memory cells with a

single read/write port to achieve small area and high speed readout. The memory

was designed for a maximum data hold time of 10ms. This required the use of larger

than minimum gate length access transistors and holding the bit lines at around Vdd/2

to combat high transistor off-currents. Writing into the memory is locally controlled

by the comparator. During readout, single-ended charge-redistribution column sense-

amps, located in the periphery and not shown in the figure, are used for robustness

against the effects of capacitive coupling between the closely spaced bit lines.

The comparator and pixel-level memory circuits can be electrically tested by ap-

plying analog signals to the sense node through the Vset signal, performing A/D

conversion using the normal input ramp and the on-chip gray-code generator, and

then reading out the digitized values. In this way, except for the photodetectors, the

DPS chip can be electrically tested and characterized without the need for light or

optics.

Figure 4.5 shows the layout of a 2×2 pixel block. The four large squares are

the photogates, which are sized and spaced equally in the horizontal and vertical

dimensions. The fill factor of this pixel is 15%. The silicide layer, which is opaque,

was blocked from the photogates. The 3-stage comparators are seen near the top and

bottom of the pixel quad. The digital memory is located in the two sections near

the center of the quad. The smaller squares are the capacitors, with the transfer and

reset transistors near by.

The pixels are mirrored about the horizontal axis in order to share the n-well and

some of the power and bias lines. With digital CDS as discussed in Section 4.1.3, we

did not observe any offset FPN due to mirroring. A small layout asymmetry, however,

has resulted in odd/even row gain FPN. Memory bitlines (metal 3) and digital ground

(metal 1) run vertically over the memory, while analog signal (metal 2) and power
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Figure 4.5: DPS pixel layout (2 × 2 pixel block shown). Pixel size is 9.4 × 9.4µm.
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distribution (metal 4) run horizontally on top of the comparators. Metal 5 covers

most of the array and acts as a light shield. Pixel array analog and digital grounds

are kept separate in order to reduce noise coupling from the digital memory into the

sensitive analog components.

4.1.3 Sensor operation

In this section we describe the details of the DPS chip operation. First we describe

the A/D conversion operation. Next we discuss the basic imaging modes of opera-

tion including single frame capture, digital correlated double sampling, high speed

operation, and multiple image capture.

A/D conversion operation

Figure 4.6 illustrates the per-pixel single-slope A/D conversion technique used in our

chip. The globally distributed voltage ramp is connected to each pixel’s compara-

tor inverting (“−”) input. The non-inverting (“+”) input on each comparator is

directly connected to the sense node. The globally distributed gray coded counter

values, shown as a stepped “digital ramp,” are simultaneously applied to the per-pixel

memory bit lines.

Input

Analog
Ramp

Memory

Gray Code
Counter

8

8

Digital OutComp. Out

Ramp

Input

Comp.
Out

Memory
Loading

Memory
Latched

Counter
(Gray Code)

Latched
Value

0 1 0

Figure 4.6: Single-slope ADC operation.
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At the beginning of conversion, the ramp voltage is lowered to just below the

lowest expected sense node voltage, which sets the comparator output to high. This

enables the per-pixel memory to begin loading the gray code values. The ramp is

then swept linearly until it exceeds the reset voltage. Simultaneously, the gray code

counter sweeps across an equivalent set of values (256 for 8 bits). As the ramp crosses

each pixel’s sense node voltage, its comparator output switches low, and the gray

code value present at that moment is latched in the pixel’s memory. At the end of

conversion, each pixel’s memory contains an 8-bit gray coded value that is a digital

representation of its input voltage.

Although using a linear ramp is the typical approach, it is possible to use alter-

native ramp profiles such as piecewise linear or exponential curves that compress or

expand different illumination ranges. It is also possible to change the gain of the

A/D conversion by changing the voltage range of the analog ramp. One may also use

alternate sequences for the digital inputs using the auxiliary inputs.

Imaging modes

Figure 4.7 depicts a simplified timing diagram for the DPS chip. Operation can be

divided into four main phases: reset, integration, A/D conversion, and readout. The

reset, integration and A/D conversion phases occur completely in parallel over the

entire array, i.e., in “snap-shot” mode, thus avoiding image distortion due to the row

by row reset and readout of APS. To minimize charge injection into the sense node,

which causes high FPN, a shallow reset signal falling edge is used. Sensor integration

is limited by dark current or signal saturation on the long end and by internal time

constants on the short end. Practical lower and upper bounds on integration time

were found to be under 10µs to well over 100ms.

After integration, per-pixel single-slope A/D conversion is simultaneously per-

formed for all pixels, as discussed in the previous subsection. Typical conversion time

is 25µs, and can be as low as 20µs at the highest frame rates. After conversion,

readout commences. The readout of one frame is completed in around 75µs.
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Figure 4.7: Simplified DPS timing diagram.

4.1.4 Testing and characterization

The DPS chip has been tested and characterized and shown to be fully functional. In

the following subsections, we present the electrical, optical, and noise characterization

results, and show results demonstrating that digital readout noise has little or no effect

on the imaging performance of the chip.

Table 4.2 summarizes the DPS characterization results. Of particular interest

is the measured average power consumption of only 50mW at 10,000 frames/s. The

pixel-level comparators consume around 30mW of static power, while the digital read-

out circuits consume around 20mW of dynamic power. The poor imaging performance

of the standard 0.18µm CMOS process resulted in high dark signal of 130mV/s and

low QE of 13.6%. The major reason for the low QE is the high recombination rate in

the highly doped substrate. With conversion gain of 13.1µV/e−, sensitivity was just

over 0.1V/lux.s. Dark current and QE can be significantly improved with minor pro-

cess modifications that should not significantly affect pixel area or chip performance.

The ADC integral nonlinearity (INL) was measured over the maximum useful input

range of 1V, at a typical 1,000 frames/s, without correlated double sampling, and
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averaged for all pixels. It was found to be 0.22% or 0.56 LSB. We also found that

reducing the swing to 0.9V improves INL to 0.1% or 0.25 LSB.

Power used at 10K fps 50 mW, typical
ADC architecture Per-pixel single-slope
ADC resolution 8-bits
ADC conversion time, typical ∼ 25µs, (∼ 20µs, min.)
ADC range, typical 1 V
ADC integral nonlinearity <0.22% (0.56 LSB)
Dark current 130 mV/s, 10 nA/cm2

Quantum efficiency 13.6%
Conversion gain 13.1 µV/e−

Sensitivity 0.107 V/lux.s
FPN, dark w/CDS 0.027% (0.069 LSB)
Temporal noise, dark w/CDS 0.15% (0.38 LSB)

Table 4.2: DPS chip characterization summary. All numbers, except for power con-
sumption are at 1000 frames/s.

To determine dark current, conversion gain, and QE of the DPS pixel, our chip

included single pixel APS and DPS test structures that can be individually accessed

and whose sense node voltages can be directly readout. The test structures are

described in detail in [79]. For completeness, we provide the results that are relevant

to the DPS chip.

Sample sequence

Figure 4.8 shows 12 frames from a milk drop splashing sequence. The sensor was

operated at 1400 frames/s where the odd frames were the dark frames captured

immediately after reset. We performed digital CDS, resulting in a sequence with

equivalent frame rate of 700 frames/s. In the figure, only every 10th frames are

shown. It is interesting to see the details of milk drop splashing captured through

the high speed camera. The overall image quality appears to be satisfactory for high

speed motion analysis and other high speed video applications.
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Figure 4.8: A 700 frames/s video sequence (frames 100, 110,. . . , 210 are shown)
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4.1.5 Summary

A Digital Pixel Sensor implemented in a standard digital CMOS 0.18µm process was

described. The 3.8 million transistor chip has 352 × 288 pixels. Each 9.4 × 9.4µm

pixel contains 37 transistors implementing a photogate circuit, an 8-bit single-slope

ADC, and 8 3T DRAM cells. Pixel reset, integration and A/D conversion occur in full

frame parallel “snap-shot” fashion. Data is read out via a 64 bit wide bus at 167 MHz

for a peak data bandwidth of 1.34GB/s. The DPS chip achieved continuous 10,000

frames/s operation and sustained 1 Gpixels/s throughput, while using only 50 mW

of power. With further scaling, significant additional per-pixel memory, processing

power and speed will inevitably become practical, further enhancing the capabilities

of the DPS approach.

4.2 Memory and processing integration limits

In this section we explore the limits of integrating memory and processing with a

CMOS image sensor in 0.18µm process and below. Our purpose is to demonstrate

that only integrating the camera system in Figure 1.2 underutilizes the possible on

chip processing power and to show that applications such as optical flow estimation

can be performed on a single chip imaging system.

The single chip imaging system architecture we consider is shown in Figure 4.9.

It comprises an APS with column level ADC or a DPS (with pixel level ADC), frame

memory with wide write bus from the sensor, a SIMD processor array, and a controller.

This is a natural choice since most image processing algorithms are spatially local and

shift invariant. Several researchers have investigated implementations of this generic

architecture [86, 87, 88, 89]. Forchheimer et al. [86] describe a 1.2µm CMOS chip with

an APS with 8bit ADC, 8bit bi-directional shift register, 128bits of memory, and a bit-

serial processor per column. Hong et al. [87] describe an array of SIMD processors

performing video compression using vector quantization. Each processor performs

87 operations/pixel·frame at 30 frames/s and handles 16 columns. Hsieh et al. [89]

discuss a video compression architecture for single-chip digital CMOS camera. Each
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processor handles 16 columns and is designed for MPEG2 encoder and DV encoder,

which require 1.8 billion operations per second.

P

MemoryControl
Logic

P P

APS with

ADC
column-level

Figure 4.9: Single chip imaging system architecture.

To explore the memory size and processing that can be integrated with an image

sensor at 0.18µm process and below, we make the following assumptions:

• We assume that the sensor captures video sequence at constant frame rate of fs

frames/s, and outputs video sequence at a standard frame rate of 30 frames/s.

We denote the oversampling factor by OV = fs

30
.

• We assume a fixed die core area of 1cm×1cm.

• We assume a 640×480 image sensor array size with 5µm×5µm pixel size. Thus

it occupies an area of 3.2×2.4 mm2. We assume that the row readout speed

of the sensor is fast enough and is not the limiting factor in determining the

throughput.
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Figure 4.10: Area and performance of embedded processor as a function of process
generation.

• We assume SIMD processor array with each processor comprising a 32-bit RISC

core with a dedicated hardware MAC and occupying 1.4mm2 [90]. The area

and performance of the processor as a function of process generation is given in

Figure 4.10 assuming no change in processor architecture [91, 92].

• We assume that the memory uses embedded DRAM, which typically lags com-

modity DRAM by one process generation. The embedded DRAM density

(Gbit/cm2) including overhead for 0.18µm technology and below is provided [91]

in Figure 4.11.

• We assume that 68mm2 of chip core area is available for frame memory and

SIMD processor array after subtracting off the image sensor area and an esti-

mate of 24.32mm2 of ADC, control logic, and routing overhead.

Figure 4.12 shows the integration limits for 0.18µm technology using the above

assumptions. The lines represent the maximum number of operations/pixel·frame

versus the maximum number of bytes/pixel possible for OV values of 1, 4 and 10.

Table 2 lists the memory and processing requirements for performing the applica-

tions in a conventional digital video camera system (see Figure 1.2) operating at the
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Figure 4.11: Embedded DRAM density as a function of process generation.

Application Operations/pixel·frame Number of bytes/pixel
Color processing 32 3

JPEG 68 3
MPEG2 220 7

Table 4.3: Processing and memory required to implement digital video camera system.

standard 30 frames/s rate. The estimated numbers provided in the table assume the

following:

• Color processing includes color interpolation, white balancing, color correction

and gamma correction.

• Color interpolation is performed using bilinear interpolation with kernel size of

3 × 3.

• White balancing is performed using the simple Gray world algorithm.
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Figure 4.12: Maximum number of operations/pixel·frame vs. maximum number of
bytes/pixel in 0.18µm CMOS process.

• Color correction is performed by multiplying a 3× 3 matrix to a vector formed

by R,G and B values in each pixel.

• MPEG2 is assumed to have 50% of B-frames.

• Motion estimation assumed the 3-step logarithmic search algorithm [93].

The memory and processing requirements for implementing color processing and

MPEG2 encoding functions with the image sensor on a single chip are 252 opera-

tions/pixel per frame and 7 bytes of memory per pixel, respectively. This is plotted

in Figure 4.12 for 0.18µm technology. Note that the requirements are not only easily

satisfied, but that the available on-chip processing power is not fully utilized.

The processing and memory requirements for the optical flow estimation algorithm

described in section 2 are also plotted in Figure 4.12. Different points represent the

trade-offs between processing and memory requirements. It is clear from the plot

that we can perform optical flow estimation at 120 frame/s with OV = 4 in 0.18µm
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technology.

Figure 4.13 shows the integration limits for 0.15µm down to 0.1µm technolo-

gies. The lines represent the maximum number of operations/pixel·frame versus the

maximum number of bytes/pixel possible for the different technology generations at

OV = 10. The figure clearly demonstrates a key assertion of our work – that merely

integrating the functions of a conventional digital camera does not fully exploit the

potential advantages of integration. As technology scales more compute intensive

applications that can take advantage of high speed imaging such as optical flow es-

timation, tracking, gain FPN correction, motion segmentation, and 3D structure

estimation can be implemented on a single chip imaging system.
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bytes/pixel in 0.15µm, 0.13µm and 0.10µm technologies at OV = 10.



Chapter 5

Summary and Future Work

5.1 Summary

An important trend in the design of digital cameras is the integration of capture

and processing onto a single CMOS chip. Although integrating the components of a

digital camera system onto a single chip significantly reduces system size and power,

it does not fully exploit the potential advantages of integration. We argue that a key

advantage of integration is the ability to exploit the high speed imaging capability

of CMOS image sensors to enable new applications and to improve the performance

of existing applications such as optical flow estimation. By integrating the memory

and the processing with the CMOS image sensor on the same chip, the availability of

high on-chip bandwidth can be used to alleviate the high data rate problem. In this

thesis, we explored the idea of capturing images at much higher frame rates than the

standard frame rate, processing the high frame rate data on chip, and outputing the

video sequence and the application specific data at standard frame rate.

This idea has been previously applied to enhancing the image quality such as

dynamic range extension and motion blur-free image capture. In these applications,

the video data at each pixel were processed temporally while spatially neighbor-

ing pixels were not utilized in the processing. Since many important operations in

video processing applications can benefit from or require the spatial information of

75
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neighboring pixels, it is important to extend this idea to 3D spatio-temporal process-

ing. In this dissertation, we extended this idea from 1D temporal processing to 3D

spatio-temporal processing. This led us to make three main contributions. First, we

developed an optical flow estimation method that uses high frame rate sequences to

estimate high accuracy optical flow. Second, we developed a method for correcting

gain FPN using an arbitrary video sequence and its estimated optical flow. Third, we

showed that it is feasible to implement such a high-speed imaging system by design-

ing and building a high-speed CMOS image sensor and also calculating the projected

limits of integrating memory and processing with the sensor. We next provide more

detailed summaries of each contribution.

In the first part of the dissertation, we describe a method for providing improved

optical flow estimation accuracy for video at a conventional standard frame rate, by

initially capturing and processing the video at a higher frame rate. The method be-

gins by estimating the optical flow between frames at the high frame rate using the

well known Lucas-Kanade method, and then accumulates and refines these estimates

to produce accurate estimates of the optical flow at the desired standard frame rate.

We presented simulation results using sinusoidal input sequences showing that the

minimum frame rate needed to achieve high accuracy is largely determined by the

minimum frame rate necessary to avoid motion aliasing. Using synthetic input se-

quences generated by image warping of a still image, we also show the significant

improvements in accuracy achieved using the proposed method. We also showed how

the proposed method can be used with optical flow estimation algorithms other than

the Lucas-Kanade algorithm. In particular, we extended the Haussecker algorithm

to work with high frame rate sequences and showed that with this extension high

accuracy optical flow estimates can be obtained even when brightness varies with

time.

In the second part of the dissertation, we described a method for gain FPN cor-

rection using a video sequence and its estimated optical flow. This part serves as an

illustration of how spatio-temporal processing can be used to enhance image quality.

Conceptually, this method can be thought of as digital CDS that cancels gain FPN

rather than offset FPN. It can be used in a digital video or still camera by taking a
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video sequence with motion prior to capture and using it to estimate gain FPN. The

sequence is then used to estimate pixel gains by iteratively minimizing the sum of the

squared brightness variations along the motion trajectories. To reduce complexity we

divide the pixel array into blocks, as is commonly done in video coding, and perform

the estimation separately for each block. We found that a block size of 5 × 5 pixels

provides a reasonable trade-off between complexity and performance. Using iterative

minimization methods also allows us to lower computational requirements and reduce

gain FPN incrementally. We tested our gain FPN correction method on synthetically

generated sequences and demonstrated significant gain FPN reduction even in the

presence of motion blur and temporal noise.

In the third part of the dissertation, we discuss the hardware implementation

issues of high speed CMOS imaging systems. To show that high frame rate capture

is possible, we first presented a 352 × 288 CMOS Digital Pixel Sensor (DPS) chip.

Fabricated in a standard 0.18µm process, this chip is the first ever published that

has a single slope ADC and 8-bit digital memory per pixel. It achieves an ultra high

frame rate of 10, 000 frames/s, at what we believe to be lower cost than commercially

available high speed CCD image sensors. The chip has 3.8 million transistors while

each 9.4 × 9.4µm pixel contains 37 transistors implementing a photogate circuit, an

8-bit single-slope ADC, and 8 3T DRAM cells. Pixel reset, integration and A/D

conversion occur in full frame parallel “snap-shot” fashion. Data is read out via a 64

bit wide bus at 167 MHz for a peak data bandwidth of 1.34 GB/s. The DPS chip

achieved sustained 1 Gpixels/s throughput, while using only 50 mW of power.

We then explore the limits of integrating memory and processing with a CMOS

image sensor in 0.18µm process and below. We show that the integration of an entire

video camera system on a chip is not only feasible at 0.18µm process, but in fact

underutilizes the possible on-chip processing power. Further, we show that the on-chip

processing power and memory are sufficient to perform applications such as optical

flow estimation, and that as technology scales applications that may benefit from high

speed imaging and require even more processing power and memory than optical flow

estimation, such as tracking, pattern recognition, and 3D structure estimation, can

be performed on a single chip digital imaging system.
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5.2 Recommendation for future work

In this thesis, we discussed hardware and algorithmic aspects of high-speed imag-

ing. Specifically, we developed an optical flow estimation algorithm and a gain fixed

pattern noise reduction method that can benefit from high frame rate and showed

that it is feasible to implement such a system on a single chip. One of the biggest

contributions of this thesis is extending our high frame rate capture – standard frame

rate output approach from 1D temporal processing to 3D spatio-temporal processing.

Estimating optical flow and motion between frames is the first and a very impor-

tant step for many video processing and computer vision applications and thus opens

the door to exploiting high frame rate imaging capability for those applications. We

believe that identifying and developing new video processing and computer vision ap-

plications that benefit from high frame rate sequences and their optical flow estimates

is worth exploring.

Gain FPN correction, described in Chapter 3, served as an example of using high

frame rate sequences to improve image quality. Many similar applications may be

worth exploring, and we believe superresolution is a particularly promising appli-

cation. Superresolution reconstruction algorithms produce a high resolution (HR)

image from a sequence of low resolution (LR) images and their estimated optical

flow. Higher frame rate can benefit superresolution reconstruction algorithm since

the amount of motion blur decreases and optical flow can be estimated more accu-

rately. Having less motion blur is advantageous since its effect is spatio-temporal

low-pass filtering, which is detrimental for superresolution. In addition, more LR

frames can be used to estimate the HR image, which can result in higher robust-

ness and better fidelity. However, many existing superresolution algorithms can not

fully utilize accurate optical flow since the optical flow is rounded to the grid size

of the HR image and interpolation error occurs when warping is performed. Also,

many such algorithms have very high computational complexity and memory require-

ments. Thus, a superresolution algorithm that can fully utilize the accurate optical

flow with low complexity would be very beneficial. One way to lower computational

complexity might be to divide the high resolution image into non-overlapping blocks
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and perform super-resolution on the blocks independently. Although this will make it

difficult to utilize the spatio-temporal information near the boundary of the blocks, it

will greatly reduce computational complexity and allow implementation of algorithms

that employ more accurate modeling of the motion and the sensor.

There are other possible applications of high speed image sensors in computer

vision and image-based rendering. For example, a high frame rate sequence and its

optical flow estimates can be used to accurately track and estimate 3D structure and

motion of objects. Current algorithms are based on standard frame rate cameras and

better performance can potentially be achieved by using high-speed cameras. Also,

high-speed cameras can potentially replace or complement arrays of cameras used

in many computer vision and image-based rendering applications. Specifically, the

use of high-speed cameras with proper motion coupled with development of proper

algorithms can perform tasks that were only possible by costly array of cameras.
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