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Summary: Adaptive or -self-optimizing
systems  utilize - feedback = principles to
achieve .automatic. performance optimiza-
tion. These principles have.been applied
to both coritrol systems and adaptive logic
structures: The Adaline (adaptive linear
threshold element) is essentially the same as
an adaptive sampled-data system with quan-
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tized input and output signals. A digital

controller made of adaptive neurons com-
prises a pattern-recognizing control system.
When the state of a control system is
represented as a pattern, learning to make
the control decisions actually becomes
the same -as learning to classify the
patterns.

Widrow—Paitern Recognition and Adaptive Control

DAPTIVE or self-optimizing sys-

tems have the ability to -modify
their structures automatically to achieve
a near optimal performance. An adap-
tive capability is particularly useful in
cases where the nature of system input
signals is not known, even statistically.
In other cases, the nature of the input
might be known to be changeable; for
example, input statistics can be mnon-
stationary. . An adaptive system that
continually searches for the optimum
within its allowed class of possibilities by
an orderly trial-and-error process would
have a performance vastly superior to
that of a.fixed system in many of these
instances. '

269



y . Fig.. 1. One-di-
y=a(x-b) +c .
mensional  surface
dy INITIAL i
Ze2a0x-8) ! N GUESS searching
1
x(n#l) DELAY x(n) / . .
! . A—Side  view of
I ONEXT _—- - _ PRESENT
| | ADJUSTMENT AT - graph
€ |1 GUESS GUESS :
1 20 @ B-—~Top view of
o X -k 9 .El(n)
:z:’ : 1 * : graph

i I
b xt2) x(h x(o)\ i

STATIONARY  INITIAL
POINT GUESS DERIVATIVE

MEASUREMENT

NOISE

%)

Several ways of classifying adaptation
schemes have been proposed in the litera-
ture. This paper will consider only
closed-loop and open-loop adaptation
processes. ' The open-loop adaptation
process involves making measurements of
input or environmental characteristics,
applying this information to a formula or
a computational algorithm, and using the
results to set the adjustments of the
adaptive system. Closed-loop adaptation,
on the other hand, involves automatic
experimentation with these adjustments
to optimize a measured system perform-
ance. Where open-loop adaptation can
be used, it is usually simpler to implement;
closed-loop adaptation is more funda-
mental and more generally applicable.

One purpose of this paper is to
study adaptation, particularly closed-loop
adaptation, with the objective of gaining
an understanding of how automatic sys-
tem synthesis can be achieved using
“performance feedback.”

Feedback and Trial-and-Error
Processes

Iterative or trial-and-error processes
are integral parts of adaptive systems.
They provide the mechanism of adapta-
tion. It is often convenient to repre-
sent such processes as feedback systems:
the error of trial and error is analogotis to
the “error” of feedback control. Many
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Manuscript ‘submitted June 29, '1962; ‘made
available for printing September 20, 1963,

BERNARD. WIDROW is with Stanf-ord University,
Stanford, Calif. .

This work was performed under Office of Naval
Research. Contract Nonr 225(24), NR 373 360,
jointly supported by the U. S. Army Signal Corps,
the U. S. Air Force, and the U. S. Navy (Office of
Naval Research); and under Air Force Contract
AF33(616)7726, supported by Aeronautical Sys-
‘tems Division, Air Force System Command,
Wright-Patterson. Air Force Base, Ohio. The
author would like to thank Prof. R. Cannon for
suggesting. the use of the 1-dimensional broom-
balancing -processifor adaptive control,

270

b
STATIONARY
POINT

~-2a
(REFERENCE)

®

of the relaxation and iterative methods
employed by numerical analysts appear
to be linear feedback systems when repre-
sented in this manner. Surface explora-
tion for stationary points is one example
of importance in this discussion.

Many of the commonly used gradient
methods search the surfaces by making
changes in the independent variables
(starting with an initial guess) in pro-
portion to measured partial derivatives
to obtain the next guess, and so forth.

These methods give rise to geometric

(exponential) decays in ‘the independent
variables as they approach a stationary
point for second-degree or quadratic sur-
faces. One-dimensional surface search-
ing is illustrated in Fig. 1. The surface
being explored in Fig. 1 is given by equa-

tion 1. The first and second derivatives
are given by equations 2 and 3.
y=a(x—b)2+¢ - (1)
d

2 2a(x—b) )
dx

da%y %

dut =2qg 3)

A sampled-data feedback model of the
iterative process is shown in Fig. 1(B).1=3
The flow graph can be reduced, and the
transfer function from any point to any
other point can thus be found. The re-
sulting . -characteristic equation can be

- . Pt

\

|
- S -

Fig. 2. Measurement of derivatives; defini-
tion of the perturbation
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' matrix algebra.

expressed as follows:
(2ak—1)z+1=0 4)

In order to choose the loop gain & to get a
specific transient decay rate, one would
have to measure the second derivative,
2a, at some point on the curve.

The first and second derivatives are
given by equations 5 and 6. These rela-
tions are precise for parabolas, and are
approximate for higher-degree curves

(Fig. 2).

dsz~25(C A) (5)
@y _L ’
il (C-2B44) ©

A 2-dimensional parabolic surface is de-
scribed by

¥=ax:®+bxg?+cxy + dwa+exyxat-f (7)
the partial derivatives by

i)
2 2ax14-c+ex2
c')xl

92" =2bxz—|—d+ex1 (8)
9%

and the second partial derivatives by

%y . :
Pl (9)

A vector flow-graph model of a 2-dimen-
sional iterative surface-searching process
is given in Fig. 3(A). The branches in
this graph are capable of carrying 2-
dimensional samples, indicated by column
matrices. Thisflow graph can be reduced
straightforwardly by using the rules of
There are as many nat-
ural frequencies (decay rates) as there
areindependent co-ordinates. - The multi-
dimensional loop gain in this case is
determined by choice of the matrix of £’s.
~ There are many surface-searching meth-
ods in common use. Among these are
the method of steepest descent, Newton’s

‘method, and the Southwell relaxation

method. The flow graph of Fig. 3(A)
can represent Newton’s method, where
the matrix of %’s is the inverse of the
matrix of second partials. Multidimen-
sional transients die out completely in one
step. In a modified Newton’s method,
the same matrix of £’s is scaled by a
factor less than unity. Transients die
out geometrically, not in one Step, and
are of a single time constant. ~Successive
adjustments proceed along a straight linie
in multidimensional space from the initial
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Two-dimensional surface-searching models

A—Flow graph representing Newton's method
B—Flow graph representing Southwell’s method

guess to the stationary point. Cross-
coupling among the co-ordmates is elim-
inated.

The flow graph of Fig. 3(A) can also
represent the method of steepest descent.
Here the matrix of £’s is a diagonal one,
with identical elements on the main
diagonal. This corresponds to- vector
changes in adjustment being proportional
to the successive local gradient vectors
Cross-coupling'is present.

The flow graph of Fig. 3(B). represents
surface searching by the Southwell
procedure. Adjustment along each co-
ordinate is set every time to minimize
y. This corresponds to the matrix of
k’s being diagonal, with ky=1/2a¢ and
ke=1/2b. Cross-coupling is present, but
transients are of a single time constant.

Approximate Analysis of an Adaptive
Sampled-Data Predictor

Consider the general linear sampled-
data system formed of a trapped delay
line, shown in Fig. 4. This system is
intended to be a statistical predictor.
The present output sample g(n) is a
linear combination of present and past
input samples. The constants in this
combination are ko, hi, hy, etc., the
_predictor impulse-response - samples, or
the ‘gains associated with ‘the delay-line
taps; their choice constitutes the variable

PREDICTOR

I
INPUT f (n)
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.the input is ¢ /(k).

part of the predictor design. They may
be adjusted by applying a mean square
reading meter to e(n), the difference be-
tween the present input and the delayed
prediction. This meter will measure
‘mean square error in prediction. Then
ko, b, b, - . ., are adjusted until the meter
reading is mmmuzed

The problem of adjusting the %’s is not
trivial, because their effects upon per-
formance’ interact. Suppose that the
predictor has only two impulses in its
impulse response, % and A;. The mean
square error for any settmg of ke and 7y
can be readily derived:

e(n)=f(n)—hof(n—1)—Mf(n—2)

€2(n) = 11(0)ho?+¢77(0)?—2¢ 7(1)ho—
2¢7/(2)+24 771kl +¢7(0)  (10)

The discrete autocorrelation function of

The mean square

error is a parabolic function of the

predictor adjustments /4 and A;.
The optimum m-impulse predlctor can

- be derived analytically by setting  the

partial .derivatives of e? of equation 10
equal to zero. This is the discrete analog
of Wiener’s optimization4 of continuous
filters. Finding the optimum  system

experimentally is the same as finding a

minimum of a paraboloid. = This could
be- done manually by having-a human
operator read the meter and set the ad-

Fig. 4 (left).
sampled-data predictor

€(n)
. PREDICTION
:ERROR

Fig. 5

prédictor
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loss in' steady-state performance.

Adjustable

(right). - Adaptive

justments; it could be done automati-
cally by using the iterative gradient meth-
ods for surface searching, as described in
the previous section. When either of
these schemes is employed, an adaptive
system results that consists essentially of
a “‘worker” and a “boss.” The worker in
this case predicts, whereas the boss has
the job of adjusting the worker.

Fig. 5 is a block-diagram representation
of such a basic adaptive unit. The boss
continually seeks a better worker. Adap-

“tation is a multidimensional . feedback

process. The error signal is the gradient
of mean square error with respect to ad-
justment.

Noise enters the adaptation feedback
system because the input process cannot
be continued indefinitely for each meas-
urement of mean square error (4, B, and
C.of Fig. 2, needed for gradient measure-
ment); it thereby places a basic limita-
tion upon adaptability. - It will be shown
that the slower the adaptation is, the more
precise it will be. The faster the adapta-

_tion, the noisier (and poorer) the adjust-

ments will be."

Consider that the adaptive model has
only a single adjustment. A plot of
mean square error versus /g for this
simplest system would be a parabola,
analogous to the parabola of Fig. 1.
During each cycle of adjustment, the der-
ivative of y=¢? with respect to x=Fh,
would have to be measured according to
the scheme of Fig. 2.

Noise in the system adjustment causes
It is
useful to define a dimensionless parameter
M, the “misadjustment,” as the ratio
of the mean increase in mean square error
to the minimum mean square error. ITtis
a measure of how the system performs on
the -average, after adapting transients

~ have died out, compared with the fixed

optimum' system. With regard to the
curve of Fig. 1,

T
c

(11)

Consideration of equation 1 shows that
(y—c), the average increase in y, is equal
to the variance in x multiplied by . This
variance is due to derivative measure-

/

Y
(a

Correlated
input A
process

}——>—oPrediction
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ment mnoise which propagates in the
iterative surface-searching process.

The noise propagation path is shown in
the flow graph of Fig. 1(B). Assuming
that derivative measurement noises are
statistically independent from one itera-
tion cycle to the next, the variance in %
equals the variance in derivative noise
multiplied by 1/(8a%), which is an ap-
proximation to the sum of squares - of
the impulses of the impulse response from
the noise-injection point to:the adjust-
mentx. The time constant 7 is defined so
that, if 7=1, adaptation transients decay
by a factor (1/e) with each iterative cycle.

Equation 5 gives the derivatives as the
difference  between forward and back-
ward measured values of y multiplied by
1/25. Noise in the -measurements of
¥ (due to finite sample size) causes noisy
derivative ‘measurements. A detailed
analysis of the variance in derivative
measurement is given -in reference 5.
The result is that

. . . . ac
Variance in derivative measurement = EP

(12)

where NN is the number of forward or back-
ward measurements per cycle, and P is
the perturbation (a dimensionless meas-
ure of system disturbance from deriva-
tive measurement). Equation 12 is based
on several assumptions: that the adjust-
ment x is in the vicinity of the minimum,
that the prediction error signal is Gaussxan—
distributed (equation 12 is quite insensi-
tive to the shape of this distribution den-
~ sity, however), and that the prediction
error samples are uncorrelated (correction
for correlation' less than 90% is very
small).

If the nature of the physmal process
permits data repeating, i.e., if it is possi-
ble to apply the same input data to the
system for both forward and backward
measurements, the variance of the deriva-
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Fig. 6. Adaptive system

tive measurement noise will not depend
upon the amplitude of the perturbation.
When the assumptions made previously
are repeated, the expression for the vari-
ance with data repeating becomes

4ac
Variance in derivative measurement =

(13)

It should be noted that in this case N is
the total number of error samples per
iteration cycle. The misadjustment
equals 1/8ar¢ multiplied by the variance

in. derivative measurement noise. . Ac-
cordingly,
1 1
M= =— 14)
8N7P 4(2N+)P (14)
For the data repeating case,
1
= 15
2(N7) (1s)

The N product is related to the total
number of samples seen by the system
in adapting to a step transient in input
process statistics. A given effect could
be achieved by using many samples per
cycle (large N) and few cycles with large
steps to adapt (small 7), or by using few
samples per cycle (small N) and proceed-
ing towards the optimum with small
steps (large 7). ,

Let the number of samples that elapse
in one time constant of adaptation be
called the adaptation time constant T.
Where data repeating is not practiced,
I'=2Nr. Where data is repeated, I'=
Nr. Equations 14 and 15 become

_equations 16 and 17, respectively:

1.
= 1
M=irp (16)
1
M=—
2r un

This can be applied to multidimensional
adaptation by using the flow graphs of

Widrow—Pattern Recognition and Addptive Control
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Fig. 3. Let n be the number of adjust-
ments. The misadjustment increases
with #? when Newton’s method is used;
it increases with #» when data are repeated
for any single- time-constant method.
One such method, Southwell’s, is easy to
implement because there is no matrix
inversion. The misadjustment is given
by multiplying equation 17 by =.

These principles may be applied in a
variety of situations, two of which are
illustrated in Fig. 6. Performance feed-
back is used in the system of Fig. 6(A)
to achieve imitation of an unknown com-
plex system. The adaptive system learns
of the characteristics of the unknown sys-
tem by imitating its behavior as best it
can. If the input is stationary and the un-
known system is linear, the mean square
error will be a parabolic function of the
adjustments. A combination of imita-
tion and prediction enables an adaptive
system to predict the output of an un-
known dynamic system by making use of
both its input and output signals. A
conventional predictor would use only
the output signal. In Fig. 6(B), a'scheme
is shown which combines a low-noise low-
capacity link for performance feedback
with a high-capacity noisy communica-
tion link. An adaptive filter is used to
separate noise and signal. The mean
square error is again a parabolic funct;()fl}'
of the adjustments, and the rate of adapts®
tion is limited by the low-capacity link.

_ The misadjustment gives a measure of
the effectiveness of adaptation.” It gives
no information on the magnitude of the
minimum mean square error or on the
effectiveness of the choice of adjustment
variables (whether there are enough of
them and whether they are the best to
The results of many simulated
experiments have shown that the meas-
ured misadjustments usually differ from
their predicted values by less than 20 or

30%.5
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Misadjustment formulas are quite
accurate when applied to the situations
for which they have been derived. These
first-order formulas' serve as rules of
thumb when. performance criteria other
than minimization of mean square error
are used, and when the worker is non-
linear.® With these principles, solutions
to many practical problems in the control
and communications fields are attainable.
As evidence of this, a 10-impulse filter
could adapt to a major change in input
process statistics after seeing 200 process
samples and. would have a steady-state
misadjustment of about 10%,.

Adaline, an Adaptive Logic Element

Another application of these principles
has been their use in adaptive switching
circuits. Performance feedback can be
used to adapt logical learning machines.
In Fig. 7, a combinatorial logical circuit
called - Adaline is shown; this circuit is
analogous to the adaptive sampled-data
systems deseribed, although with quan-
tized inputs and output.

The binary signals on the individual
input lines have values of 4+1 or —1,
rather than the.usual values of 1 or 0.
Within the €lement, a linear combination
oftheinput signals is formed. The weights
are the gains a,, as, . . ., which could have
both positive and negative values. . The
output signal is 41 if this weighted sum
is greater than a certain threshold, and —1
otherwise. The threshold level is deter-
mined by the setting of ao, whose input
is permanently connected to a 1 source.
A constant added to the linear combina-
tion of input signals varies with a,.

For fixed gain settings, each of the 24
possible input combinations would cause
either a 41 or —1 output. Thus, all

. Fig. 8. Knobby ‘Adaline

possible inputs are classified into two
categories. The input-output relation-
ship is determined by choice of the gains
@y, . ..,a4. Inthe adaptive element, these
gains are set during the training pro-
cedure.

In general, there are 22" different input—
output relationships or truth functions by
which the four input variables can be
mapped into the single output variable.
Only a subset of these, the linearly sep-
arable truth functions,”8 can be realized
by all possible choices of the gains of the
element in Fig. 7.

Although this subset is not all-inclusive
(it becomes a vanishingly small fraction
of all possible switching functions as the
number of inputs increases), it is a useful
subset and is ‘‘searchable.” In other
words, the “‘best” function in many prac-
tical cases can be found iteratively with-
out trying all functions within the subset.
An iterative search procediire has been
devised which is quite simple to implement
and which can be analyzed by statistical
methods that were originally developed

[T ST T T T T T 1T T T T -
o+ !
i
O [
INPUT | ‘ﬁ Z{ T .:E' : OUTPUT
' 1
O~ t
! |
! i
! |
: L3 Adaption |
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for the analysis of adaptive sampled-data
systems.

An adaptive pattern classification ma-
chine has been constructed for the purpose
of illustrating adaptive behavior and
artificial learning. This machine, which
is an adjustable threshold element called
“Knobby Adaline,” is illustrated in Fig. 8.

During a training phase, simple geo-
metric patterns are fed to the machine by
setting the toggle switches in the 4X4
input switch array. The system learns
something from each pattern and accord-
ingly experiences a small design change.
The machine’s total experience is stored
in the values of the weightsay,. . . ,a16. The
machine can be trained on undistorted
noise-free patterns by repeating them

. over and over until the iterative search

process converges, or it can be trained on
a sequence of noisy patterns on a 1-pass
basis to make the iterative process con-
verge statistically. = Combinations of
these methods can be accommodated
simultaneously. After training, the ma-
chine can be used to classify the original
patterns and noisy or distorted versions of
these patterns.

In the actual machine, the quantizer is
not built in as a device, but is effected by
the operator in viewing the output meter.
Different quantizers (2-level, 3-level, or
4-level) are realized by using the appro-
priate meter scales. Adaline can be
used to classify patterns into. several
categories by using multilevel quantizers
and by following exactly the same adap-
tive procedure. :

The iterative searching (training) rou-
tine is as follows. A pattern is fed to the
4X4 machine. All gains, including the
threshold level, are to be changed by the
same absolute -magnitude so that the
analog error (the difference between the
desired meter reading -and the actual
meter reading) is brought to zero. This
is accomplished by changing each gain in
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the direction which will diminish the
error by 1/17. The 17 gains may be
changed in any sequence and, after all
changes are made, the error for the present
input pattern will be zero. The weights
associated with switches in the ‘‘up”
position (41 input signals) are incre-
mented by rotation in the same direction
as the desired meter needle rotation;
the weights connected to switches in the
“down” position are incremented in the
opposite direction from the desired meter
needle rotation. The next pattern and its
desired output are then presented, and the
error is read.  The same adjustment rou-
tine is followed and the error is brought to
zero. If the first pattern were reapplied
at this point; the error would be small but
not necessarily zero. More patterns are
inserted in a like manner. Convergence
isindicated by small errors (before adapta-
tion), with small fluctuations about stable
weight values. It may be noted that
adaption is indicated even if the quantized
neuron output is correct. If, for example,
the desired response is 41, the element is
adapted to bring the analog response
closer to the desired response, even if the
analog response is more positive than 4-1.
The iterative training routine is purely
mechanical. Electronic automation of
this procedure will be discussed later in
the paper.
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" the mean square of the error e,z

100

The results of a typical adaption on six
noiseless patterns are given in Fig. 9.
During adaption, the patterns were
selected in a random sequence, and were
classified into three categories. Each T
was to be mapped to +30 on the meter
dial, each G to 0, and each F to —30.
After each adaptation, as a measure of
performance, all six patterns were read in
(without adaptation) and six errors were
read. The sum of their squares, de-
noted by Ze?, was computed and plotted.
Fig. 9 shows the learning curve for the
case in which all gains were initially
zZero. :

Statistical Theory of Adaptation for

Adaptive Threshold Elements

The analog error signal measured and
used in adaptation is the difference be-
tween desired output and the sum before
quantization. This error is indicated by
e in Fig. 10. The actual error, indi-
cated by e, in Fig. 10, is the difference
between the digital output and the desired
output. The object of adaption is to find,
given a collection of input patterns and
the associated desired outputs, the best
set of weights ao, a1, ..., @p to minimize
Indi-
vidual errors could only have the values
of +2, 0, and-— 2 with a 2-level quantizer.

Widrow—Pattern.: Recognition and Adaptive Control

Minimization of ¢, is therefore equivalent
to the minimizing of the average number
of decision errors. '

The simple adaption procedure de-
scribed in the paper minimizes €2 rather
than 2. The analog error e has a zero
mean (a consequence of the minimization
of €2) and will be assumed to be Gaussian-
distributed. By making use of certain
geometric arguments, it can be shown that
¢ is a monotonic function of ¢ under most
conditions and that minimization of ez is
equivalent to minimization of ¢,? and to
minimization of the probability of error.
The ratio of these mean squares has been
calculated; it is plotted in Fig. 10 as a
function of error probability.

Given any collection of input patterns
and the associated desired outputs, the
meastired mean square error ez miist be a
quadratic function of the gain settings
@, ..., an. Let the kth pattern be in-
dicated as thevector S(k) =si(k), s2(k), . ..,
sn(k). The s's, which have values of 41
or —1, represent the » input components

‘numbered in a fixed manner.  The kth

error is

é(k);_-;d(k)_ao—alsl(k)_d252(k)—
: v "ansn(k) (18)

For simplicity, let the element have only
two input lines and a threshold level con-
trol. The square of the error is accord-

ingly

(k) = B2(B)+au s (R)ar*+ sy (k)ast—
2d(k)ao—2d(k)si(k)ar—2d(k)so( k)az+
251(k)agar+2so(k)aeas+2s1(k)sa(k)araz (19)

The mean square error averaged over & is

e =ao*+¢(s1, s)a’+ (s se)as?—2day—
2¢(d, s1)a1—2¢(d, s2)az+2s10001+

252002+ 2¢(s1, s2)a102-+4(d, ) (20)

The ¢’s are .spatial correlations; thus,
$(s1, 52) = 51,5, etc. It may be noted that
#(s5,5;) =s;5;=1. Adjusting  the a’s to
minimize ¢ is equivalént to searching a
parabolic stochastic -surface ' (having as
many dimensions as there are a's) for a
minimum: How well this surface can be
searched will be lmited by -sample
size, i.e., by the mumber of patterns seen
in the searching process.

The method of searching which has
proven most useful is the method of steep-
est descent. Vector adjustment changes
are made in the direction of the gradient.
Transients consist of sums of geometric
sequence components (there are as many
natural “frequencies” as the number of
adjustments). It can be shown that the
method of steepest descent will be stable
when - the proportionality constant £k
between the partial derivative and size
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of change is less than the reciprocal of the
second :partial derivative. It can also
be shown that when £ is small, transients
can be approximately represented as being
of the single time constant 1/2 k.

The method of adaption that has been
used requires an extremely small sample
size per iteration .cycle, that is, one pat-
tern.  One-pattern-at-a-time adaption
has the advantages that derivatives are
very easy to measure and that no storage
is required within the adaptive machinery
except for the gain values. -

The square of the error for a single pat-
tern (the mean square error for a simple
size of one) is given by equation 19.
The partial derivatives can be listed as
follows:

ek
: az(zo ) =200+ 20026 (R)es-+ 252 D))
dex(k) = 51(B)[—2d(k)+2a0+25:(k)ar+
day
232(’3)‘12]
k
aeaf; ) o) — 20+ 200+ 25:(Br+

BBl (21

Comparison of equation 21 with equa-
tion 18 shows that the derivatives are
simply related to the analog error, and
suggests that the derivative could .be
measured without squaring and averaging
and without actual differentiation. The
jth partial derivative is given by the
following equation:

e k)

20, = —2s5(k)e(k)

(22)
It follows that all partial derivatives have
the same magnitude, and that their
signs are determined by the error sign
and the respective input signal signs,
The procedure described for bringing (%)
to zero with each successive input pattern
gives the constant & a value of 1/2(n+1).
It can be seen from the previous discussion
that the time constant of the iterative
process is therefore r=(n-1) patterns.
On the 4X4 Adaline, there are n=16 in-
put line gains plus a level control.. There-
fore, the time constant should be roughly
17 patterns (thisis verified by the learning

‘curve of Fig. 9). The search procedure
could be readily modified to speed up or
slow down the adaption process by ad-
justing k. »

The misadjustment equation 17, when
applied to the adaptive element, gives the
per-unit increase in analog mean square
error as a result of adapting on a finite
number of patterns. Since 'the ratio
of probability of neuron error to the mean
square error e is essentially constant over
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a wide range of error probabilities (Fig.
10), the misadjustment may be interpreted
as the ratio of the increase in error proba-
bility to the minimum etror probability.
If adaption is accomplished by injec-
tion of a fresh pattern each iteration cycle,

the misadjustment, as derived from equa--

tion 15, is

_(n+1)~
T2

(23)

When the procedure of bringing e(k) to
zero each iteration cycle is followed the
mlsad]ustment is

_(n+1) (n41) 1

2 2Ant+l) 2 (24)

If adaption is accomplished by taking a
fixed collection of IV patterns and repeat-
ing them over and over for several time
constants (where the time constant is
long, i.e. several times N), the misadjust-
ment can be shown to be

(n+1)

M= (25)
Simulation tests have shown that the mis-
adjustment equations, though approxi-
mate, apply to a very wide range of pat-
tern and noise characteristics. A descrip-
tion is given in reference 9 of a typical
experiment and its results.

The adaptive classifier can adapt after
seeing remarkably few patterns. A mis-
adjustment of 20%, is acceptable in many
applications. To achieve this, all one
must do is supply the adaptive classifier
with a number of patterns equal to five
times the number of input lines, regardless
of how noisy the patterns are and how
difficult the *‘pure” patterns are to separ-
ate. The followmg rule of thumb applies
to adaptive threshold elements: the num-
ber of patterns required to train an
adaptive element is equal to several times
the number of bits per pattern.

. n
inputs

.B

“n)

Fig. 10, Adaptive- ‘3) 2

Madaline I, a Parallel Network
of Adalines

Linearly separable pure patterns and
noisy versions of the patterns are readily
classified by the single element. Although
nonlinearly separable pure patterns and
their noisy equivalents also can be sep-
arated by a single element, absolute per-
formance can be improved and the gen-
erality of the classification scheme can be
increased greatly if more than one
element is used. .

Two Adalines were combined by using
the following adaption procedure: If the
desired output for a given input pattern

" applied to both elements was —1, then
both elements were adapted in the usual
manner to ensure this. If the desired
output was +1, the element with the
smallest analog error was assigned to
adapt to give a +1 output, while the
other element remained unchanged. If
either or both elements gave outputs of
+1, the pattern was classified as 41. If
both elements gave —1 outputs, the pat-
tern was classified as —1.

This procedure assigns specific responsi-
ability to the element that can most easily
assume it. If, at the beginning of adap-
tion, a given element takes responsibility
for producing a +1 with a certain input
pattern, it will invariably take this re-
sponsibility each time the pattern is ap-
plied during training. Tt is not necessary
for the teacher to assign responsibility.
The combination does this automatically
and requires only input patterns and the -
associated desired outputs, as with the
single element. :

Another combination of Adalines has
been organized in the following fashion:
The inputs of an odd number of Adalines,
five, for example, are connected in parallel
and their outputs are connected to a
majority device. If the desired response
is 1, a majority, at least three out of five,

Quantizer
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- 1 _ put

€ €n
measured error neuron error

+
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+1,-1
desired output

4 —L
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Fig. 11.

must give the 41 response. If the ma-
jority response is —1, then the element
whose sum (confidence level) is closest
to zero is adapted to the 41 state. If the
majority is now positive, the adaption
is complete. If, on the other hand, an-
other element must be adapted to make
the majority positive, then the next
element whose confidence level is closest
to zero is adapted, etc. These parallel
combinations of elements whose outputs
are connected to fixed (nonadaptive)
logical structures have been called Mada-
lines (many Adalines). W. C. Ridgway
III" has succeeded in proving that the
adaption procedures described are con-
vergent, and that if a given problem is
solvable by such systems, then the given
problem is guaranteed to be solved.

Memory Capacities of Adalines and
Madalines

When experiments are first performed
with an Adaline machine and it is trained
to respond properly to given input pat-
terns, the number of patterns that can be
trained into the device should be deter-
mined. J. S. Koford has discovered by
digital simulation that the number of
random patterns (with their random de-
sired responses) selected in a row that can
be trained into an Adaline is equal to
twice the number of adaptive weights.

’

Moreover, when the same type of experi- '

ment is made with a Madaline I structure

using either the “or” or the “majority” -

output logic element, the number of
patterns that can be absorbed equals the
number that can be absorbed per element
multiplied by the number of elements.

276

In other words, the capacity of a Mad-
aline, like the capacity of an Adaline, is a
number of patterns equal to twice the
number of adaptive weights. It seems
certain that the memory capacity per
adaptive weight will turn out to be much
higher in multilayered - structures con-
taining more than one adaptive layer.

Realization of Adaptive Circuits with
Chemical Memistors

The structure of the Adaline neuron
and its adaptation procedure is simple
enough to allow an electronic fully auto-
matic element to be developed. To have
such an adaptive element, it is necessary
to be able to store the gain values (analog
quantities which can be positive or nega-
tive) in such a manner that these values
could be changed electronically.

A mnew circuit element called the
memistor (a resistor with memory)!! has
been devised by the author and M. E.
HofI for the realization of automatically
adapted Adalines. A memistor provides
a single variable gain factor. Each ele-

ment, therefore, employs a number of

memistors equal to the number of vari-
able weights.

The memistor consists of a conductive
substrate with insulated connection leads,
and a metallic anode, all in an electrolytic
plating bath. The conductance of the
element is reversibly controlled by elec-
troplating. Like the transistor, the
memistor is a 3-terminal element. The
conductance between two of the terminals
is controlled by the time integral of the
current in the third, rather than by its
instantaneous value as in the transistor.
Reproducible -elements have been made
which are continuously variable; they
typically vary in resistance from 100 ohms

Unstable
pendulum

Damping \\ ~

to 1 ohm, accomplishing this in about 10
seconds with - several millidinperes of
plating current. Adaptation is achieved
by direct current; the logical structure is
sensed nondestructively by passing alter-
nating currents through the array of
memistor cells.

None of the element values or memistor
characteristics is critical, because perform-
ance feedback in the adaptation process
automatically finds the best weights in
any event. These elements, have been
built and have adapted, even with some
defective and partially incorrectly wired
memistor “circuits.

The first working memistors were
made of ordinary pencil leads immersed
in test tubes containing copper-sulphate—
sulphuric-acid plating baths. By using
different: baths, plating mietals, ‘geom-
etries, and substrate materials, improve-
ments have been made in lifetime and in
electrical characteristics such as stability,

-relaxation, smoothness, and speed of
adaptation. Memistor cells have already
proven to be reliable over more than a year
of service and are now commercially
available, mounted in 7T0-9 transistor
cans. It is expected that memistors
and other components that will appear in
the future will have a substantial effect in
making possible inexpensive, simple, and
reliable systems, of both control and
logical types.

- Fig. 11 shows a machine containing six
Adalines using a total of 102 memistors.
This machine, Madaline I, has given
excellent performance for the past year.
When first  constructed, very  complex
problems, such as 50 arbitrary 4X4 pat-
terns with their desired responses, were
able to be trained in, in spite of the fact
that 259 of the weights were not adapt-
ing properly. This was the first produc-
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Fig. 12. One-di-
mensional  broom-
balancing machine
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tion of memistors, and they were con-
nected in without having been tested.
Some were defective in construction,
others were connected improperly, and
others were victims of cold solder joints.
This type of system, however, has the
ability to adapt around its own defects.

The Adalines in Madaline I ‘are in-
dependently adapted under manual con-
trol. This allows experimentation with
the adaption process; provision is made
for connecting the Adaline outputs to
either the “or” or ‘“‘majority” output ele-
ments.. The digital input signals can
come either from toggle switches or from
a 4X4 array of photocells that comprises
the retina for an artificial eyeball.
Optical images can be presented directly
to Madaline.

Conclusions

This paper has shown how performance
feedback can be.used to achieve automatic
self-optimization of control systems, and
how the same principles can be used to
adapt logic structures. The Adaline ele-
ment is essentially the same as an adap-
tive sampled-data system with quantized
input and output signals.

The adaptive logic systems described
in this paper originated from elementary
adaptive control systems. As adaptive
pattern-recognizing systems, they may
now be used in control systems that can
be taught a variety of fairly sophisticated
control functions. An example is illus-
trated in Fig. 12. '

The objective of the arrangement in this
figure is first to have the man learn to
balance the unstable pendulum, and then

to have him teach a sequential Madaline
to do the same thing. As the man
stabilizes the pendulum, Madaline ‘“‘sees”
the pendulum (which is illuminated) and,
at the same time, senses how the man
reacts. After training, Madaline will be
able to take over and stabilize the broom
handle by providingappropriate switching
signals which are reactions to the sequen-
tial patterns seen by its artificial eyeball.

At the present time, the broom bal-
ancer is equipped with ordinary senscrs
that provide four analog state-variable
signals: angle, angle rate, velocity, and
position’ of the cart supporting the
pendulum. These signals are quantized
and encoded by means of linearly inde-
pendent codes described by Smith.'? In
this system, a conventional fourth-order
bang-bang controller performs the control
function while a single Adaline element
learns to imitate the controller; after
several minutes of training, the Adaline
controller can take over and control the
broom balancer. Smith shows how Ada-
lines and simple Madaline networks
can be coupled to properly encoded
sources of state-variable signals to provide
optimal switching surfaces for bang-bang
controllers. Future research will be con-
cerned with using more complex input
signals, such as the optical ones de-
scribed, and with learning without the
teacher, i.e., self-adaptation rather than
adaptation by imitation.

It is expected that pattern-recognizing
control systems will be extremely flexible,
and that they will make possible econom-
ical and reliable automation and control _
of highly complex processes, ultimately
including processes whose complexities

3

’

defy detailed mathematical description
and analysis.
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