Backpropagation and its
Applications
Bernard Widrow Michael A. Lehr
Stanford University Department of Electrical
Engineering, Stanford, CA 94305-4055

Backpropagation remains the most widcly used neural net-
work -algorithm. We present a basic review of this method
and its apphcat:ons The backpropagation algorithm’s roots
are also explored m a discussion of its predecessor, the LMS
Algortihm

Introduction:

The field of neural networks has enjoyed major ad-
vances since 1960, a year which saw the introduc-
tion of two of the earliest feedforward neural net-
work algorithms: the Perceptron rule [1] and the
LMS algorithm (or Widrow-Hoff rule) [2]. Around
1961, Widrow and his students devised Madaline
Rule I (MRI), the earliest learning rule for feedfor-
ward networks with multiple adaptive elements [3].
The major extension of the feedforward neural net-
work beyond Madaline I took place in 1971 when
Werbos developed a backpropagation algorithm for
training multilayer networks. In 1974, this algo-
rithm was incorporated in his doctoral dissertation
[4]'. Werbos’s work remained almost unknown in
the scientific community. In 1982 Parker rediscov-
ered the technique and in 1985, published a report
on it at MIT [6]. Not long after Parker published
his findings, Rumelhart, Hinton, and Williams [7]
refined the technique and succeeded in making it
widely known.

Early a.pphca.tlons of LMS and MRI were devel-
oped by Widrow and his students in their studies of
speech and pattern recognition, weather forecast-
ing, and adaptive controls. After some success in
these areas, work shifted in the mid-1960’s to adap-
tive filtering and adaptive signal processing. This
proved to be a fruitful avenue for research with ap-
plications including adaptive antennas, adaptive in-
verse controls, adaptive noise cancelling, and seis-
mic signal processing. Outstanding work by R. W.
Lucky and others at Bell Laboratories led to ma-
jor commercial applications of adaptive filters and
the LMS algorithm to adaptive equalization in high
speed modems and to adaptive echo cancellers for
long distance telephone and satellite circuits.

t We should note, however, that in the field of variational
calculus the idea of error backpropagation through nonlin-
ear systems existed centuries before Werbos first thought to
apply the concept to neural networks. In the past 25 years,
these methods have been used widely in the the field of op-
timal control, as discussed by Le Cun [5].

With the development of the backpropagation al-
gorithm, it has now become possible to success-
fully attack problems requiring neural networks
with high degrees of nonlinearity and high preci-
sion. Examples are shown in [8]. Backpropagation
networks with fewer than 150 neural elements have
been successfully applied in vehicular control sim-
ulations, speech generation, and undersea mine de-
tection. Small networks have also been used suc-
cessfully in airport explosive detection, expert sys-
tems, nonlinear system identification, :and scores
of other applications. Furthermore, efforts to de-
velop parallel neural network hardware are advanc-
ing rapidly, and these systems are now becoming
available for attacking more difficult problems like
continuous speech recognition.

The networks used to solve the above applications
varied widely in size and topology. A basic compo-
nent of the neural networks used in all of these ap-
plications, however, is the adaptive linear combiner.

The Adaptive Linear Combiner

The adaptive linear combiner is diagrammed in Fig.
1. Its output is a linear combination of its inputs.
In a digital implementation, this element receives
at time k an input signal vector or input pattern
vector X; = [2o,Z1,,Z2,,---Zn,]T, and a desired
response di, a special input used to effect learning.
The components of the input vector are weighted
by a set of adaptive coefficients, the weight vector
W = [wo,,w:1,,Ws,,. .- Wn,]T- The sum of the
weighted inputs is then computed, producing a lin-
ear output, the inner product sy = X{Wk. The
components of X may be either continuous analog
values or binary values. The weights are essentially
continuously variable, and can take on negative as
well as positive values. By using a training algo-
rithm to adapt its weights, the adaptive linear com-
biner has the ability to implement a wide range of
responses to the patterns in a given training set.
When a nonlinearity is placed on the output of
an adaptive linear combiner, the cascade is called an
Adaline (ADAptive LINear Element). In the 1960’s,
the Adaline’s nonlinearity was usually the sign or
signum element. The Adaline was also known as
a linear threshold element whose output was either
+1 or —1. Modern neural networks usually use an
“S”-shaped “sigmoid” function, a “soft” quantizer
which varies smoothly from —1 to +1. An Adaline
using a sigmoid nonlinearity is sometimes referred
to as a Sigmoid Adaline. The Adaline usually in-

cludes a bias weight wo, which is connected to a

constant input, zg = +1. This weight effectively

21

Input
Pattern
Vector

layer. The backpropagation algorithm provides a
method for establishing these error signals.

+1

Steepest-Descent Rules

- Xk

d,
Desired Response
Figure 1: Adaptive linear combiner.

Weight Vector

controls the threshold level of the quantizer or sig-
moid.

Multilayer Networks

The Madaline networks of the 1960s had adaptive
first layers and fixed threshold functions in the sec-
ond (output) layers [8]. The feedforward neural net-
works of today often have many layers, and usually
all layers are adaptive. The backpropagation net-
works of Rumelhart et al. [9] are perhaps the best-
known examples of multilayer networks. A fully-
connected three-layer feedforward adaptive network
is illustrated in Fig. 2. In a fully-connected layered
network, each Adaline receives inputs from every
output in the preceding layer.

Usually, the objective of adaptation for a feedfor-
ward neural network is to reduce the error between
the desired response and the network’s response av-
eraged in some way over the training set. The
most common error function is mean-square-error
(MSE), although in some situations other error cri-
teria may be more appropriate [8]. The most pop-
ular approaches to mean-square-error reduction in
both single-element and multi-element networks are
based upon the method of steepest descent. More
sophisticated gradient approaches such as quasi-
Newton and conjugate gradient techniques often
have better convergence properties, but the con-
ditions under which the additional complexity is
warranted are not generally known. The discussion
that follows is restricted to minimization of MSE by
the method of steepest descent [10]. More sophis-
ticated learning procedures usually require many of
the same computations used in the basic steepest-
descent procedure.

Adaptation of a network by steepest-descent
starts with an arbitrary initial value Wy for the
system’s weight vector. The gradient of the mean-
square-error function is measured and the weight
vector is altered in the direction corresponding to
the negative of the measured gradient. This proce-
dure is repeated, causing the MSE to be successively

Output
Vector

Input

Pateern reduced on average and causing the weight vector

to approach a locally optimal value.
k The method of steepest descent can be described
by the relation

Wiy = Wi+ p(=Vi), (1)

o y

first-layer
Adalines

second-layer
Adalines

Figure 2: A three-layer adaptive neural network.

During training, the responses of the output el-
ements in the network are compared with a cor-
responding set of desired responses. Error signals
associated with the elements of the output layer are
thus readily computed, so adaptation of the output
layer is straightforward. The fundamental difficulty
associated with adapting a layered network lies in
obtaining “error signals” for hidden layer Adalines,
that is, for Adalines in layers other than the output

where p is a parameter that controls stability and
rate of convergence, and V is the value of the gra-
dient at a point on the MSE surface corresponding
to W = W,.

The LMS Algorithm The LMS algorithm works
by performing approximate steepest descent on the
mean-square-error surface in weight space. Because
it is a quadratic function of the weights, this surface
is convex and has a unique (global) minimum?. An
instantaneous gradient based upon the square of the

tunless the autocorrelation matrix of the pattern vector
set has m zero eigenvalues, in which case the minimum MSE
solution will be an m dimensional subspace in weight space

[11).

22

instantaneous error is

o}
dw
R 662 Ok
Vk = BV\l;k = ¥ (2)
€k
Owank

LMS works by using this crude gradient estimate in
place of the true gradient V. Making thls replace-
ment into Eq. (1) yields

Win = Witp (Vi) =Wi—p aw
The instantaneous gradient is used because (a) it is
an unbiased estimate of the true [11] gradient, and
(b) it is easily computed from single data samples.
The true gradient is generally difficult to obtain.
Computing it would involve averaging the instanta-
neous gradients associated with all patterns in the

* training set. This is usually impractical and almost
always inefficient.

The present error € is deﬁned to be the differ-
ence between the desired response di and the linear
output s = W{Xk before adaptation:

A T
€k = dp — Wi X;. 4)

Performing the differentiation in Eq. (3) and replac-

ing the error with (4) gives

Je
Wiy = Wi—2pe a“’;k
8 (dp —WTX
= Wi —2ue (k(?W: k)‘ (5)

Noting that d; and X; are independent of Wy, we
obtain

Wit Wi + 2pep Xg. (6)
This is the LMS algorithm. The learning constant
4 determines stability and convergence rate.. For
input patterns independent over time, convergence
of the mean and variance of the weight vector is
ensured under fairly general conditions [12, 8] if

Q)

0<m< 3trace[R]’

where R is the input correlation matrix E[X;X7]
and where trace[R] =) (diagonal elements of R)
is the sum of the signal powers of the components of
the X-vectors, i.e. E(XTX). With g set within this
range, the LMS algorithm converges in the mean to
W*, the optimal Wiener solution [11].

23

In the LMS algorithm, and other iterative
steepest-descent procedures, use of the instanta-
neous gradient is perfectly justified if the step size
is small. For small y, W will remain essentially
constant over a relatively small number of training
presentations, K. The total weight change during
this period will be proportional to

K-l ge2 O¢
Z OC%4e Z k4L
OW ks (=0 aW")
= BWk (Z ck“)
o

mean-square-error function.
weights follow the true gra-

where £ denotes the
Thus, on average the
dient.

Backpropagation for the Sigmoid Adaline
Fig. 3 shows a “Sigmoid Adaline” element which
incorporates a sigmoidal nonlinearity. The input-
output relation of the sigmoid can be denoted by
yr = sgm(sg). A typical sigmoid function is the
hyperbolic tangent:

e =23k
Y = tanh(sg) = (-]L——) .

14e~28x ©

We shall adapt this Adaline with the objective of

Input Pattern
Vector

Weight Vector

Figure 3: Adaline with sigmoidal nonlinearity.

minimizing the mean square of the sigmoid error €,
defined as

(10)

Our objective is to minimize E[(¢;)?], averaged over
the set of training patterns, by proper choice of the
weight vector. To accomplish this, we shall de-
rive a backpropagation algorithm for the Sigmoid

- A
€ = di — yp = di — sgm(sg)-

Adaline element. An instantaneous gradient is ob-
tained with each input vector presentation, and the
method of steepest descent is used to minimize error
as was done with the LMS algorithm of Eq. (6).

Referring to Fig. 3, the instantaneous gradient
estimate obtained during presentation of the kth
input vector Xj is given by

o _O0&) .. 0&
= =2 . 11
VE=Swy ~ P pw, (11)
Differentiating Eq. (10) yields
O&r Osgm(st) ’ Osy.
=- =- —. (12
W, W, sgm (k)5 (12)
We may note that
sk = X7 Wy. (13)
Therefore, 5
Sk
= Xj. 14
oW, - X (14)
Substituting into Eq. (12) gives
aavilfck = —sgm’ (s1)X. (15)
I'nsérting this into Eq. (11) yields
Vi = —2&sgm’ (s1)Xx. (16)

Using this gradient estimate with the method of
steepest descent provides a means for minimizing
the mean-square-error even after the summed sig-
nal s; goes through the nonlinear sigmoid. The
algorithm is

Wi Wi + pu(—=Vi)

Wi + 2p€ksgm' (sk)Xk.

17
(18)

Algorithm (18) is the backpropagation algorithm for
the single Adaline element. The backpropagation
name makes more sense when the algorithm is uti-
lized in a layered network, which will be studied be-
low. Implementation of algorithm (18) is illustrated
in Fig. 4.

If the sigmoid is chosen to be the hyperbolic tan-
gent function (9), then the derivative sgm’(s) is

given by
, _ O(tanh(sy))
sgm (sx) = T o

1 — (tanh(si))? = 1-¢2. (19)

Accordingly Eq. (18) becomes
Wi+ 208 (1 =)X

Wi (20)

Input Pattern

24

Weight V
Vector a’ ector
x k
k
+] (.Y
o— Wik
X
X, b =Y
- Sigmoid
s Output
- Wk
X ok
AW,
] " LMS |
% Algorithm
Hé sgm's) 4 ,?“',s,"dun,,

Figure 4: Implementation of backpropagation for t,h:e
Sigmoid Adaline element.

Backpropagation for Networks The publica-
tion of the backpropagation technique by Rumel-
hart et al [7] has unquestionably been the most
influential development in the field of neural net-
works during the past decade. In retrospect, the
technique seems simple. Nonetheless, largely be-
cause early neural network research dealt almost ex-
clusively with hard-limiting nonlinearities, the idea
eluded neural network researchers throughout the
1960’s. » . .

The basic concepts of backpropagation are easily
grasped. Unfortunately, these simple ideas are often
obscured by relatively intricate notation, so formal
derivations of the backpropagation rule are often
tedious. We present an informal derivation of the
algorithm and illustrate how it works for the simple
network shown in Fig. 5. A more formal derivation
would require the use of ordered derivatives to pre-
cisely identify which quantities are treated as vari-
ables in each of the partial derivatives used below
[13].

The backpropagation technique is a substantial
generalization of the single Sigmoid Adaline case
discussed in the previous section. When applied to
multi-element networks, the backpropagation tech-
nique adjusts the weights in the direction opposite
to the instantaneous error gradient:

o
oz) oum

YV = =
k= aw,

(21

Now, however, W is a long n-component vector of
all weights in the entire network. The instantaneous
sum squared error ez is the sum of the squares of
the errors at each of the N, outputs of the network.

Input
Pattern
Vector

X

- Figure 5:

Thus
(22)

Nll
2 _ 2
€ E= z fi k-
i=1
In the network example shown in Fig. 5, the sum
square error is given by ‘

€2 = (di — v1)* + (d2 — 12)?, (23)

where we now suppress the time index k for conve-
nience.

In its simplest form, backpropagation training be-
gins by presenting an input pattern vector X to the
network, sweeping forward through the system to
generate an output response vector Y, and com-
puting the errors at each output. The next step
involves sweeping the effects of the errors backward
through the network to associate a “square error
derivative” § with each Adaline, computing a gra-
dient from each 6, and finally updating the weights
of each Adaline based upon the corrésponding gra-
dient. A new pattern is then presented and the pro-
cess is repeated. The initial weight values are nor-
mally set to small random numbers. The algorithm
will not work properly with multilayer networks if
the initial weights are either zero or poorly chosen
nonzero values.

We can get some idea'about what is involved in
the calculations associated with the backpropaga-

25

Output
Response
Vector

Y

=@
o]

Example two-layer backpropagation network architecture.

tion algorithm by examining the network of Fig.
5. FEach of the five large circles represents a linear
combiner, as well as some associated signal paths
for error backpropagation, and the corresponding
adaptive machinery for updating the weights. This
detail is shown in Fig. 6. The solid lines in these di-
agrams represent forward signal paths through the
network, and the dotted lines represent the sepa-
rate backward paths that are used in association
with calculations of the square error derivatives 6.
From Fig. 5, we see that the calculations associated
with the backward sweep are of a complexity which
is roughly equal to that represented by the forward
pass through the network. The backward sweep re-
quires the same number of function calculations as
the forward sweep, but it requires no weight multi-
plications in the first layer.

As stated above, after a pattern has been pre-
sented to the network, and the response error of
each output has been calculated, the next step of
the backpropagation algorithm involves finding the
instantaneous square error derivative § associated
with each summing junction in the network. The
square error derivative associated with the jth Ada-

X. Algorithm|

Figure 6: Detail of linear combiner and associated
circuitry in backpropagation network.

line in layer £ is defined as?

6(‘).‘3_1£
T 2635-‘).

Each of these derivatives in essence tells us how sen-
sitive the sum square output error of the network
is to changes in the linear output of the associated
Adaline element.

The instantaneous square error derivatives are
first computed for each element in the output layer.
The calculation is simple. As an example, below we
derive the required expression for 652), the deriva-
tive associated with the top Adaline element in the
output layer of Fig. 5. We begin with the definition

of 6§2) from Eq. (24),

A _1 36‘2

52 i
! 2 35&2)

(25)

Expanding the squared error term 2 by Eq. (23)
yields

_la ((dl —)’ +(d2 - y2)2)

52

2 as? (26)
10 (d — sgm(s™))’
T2 Bsgz)
19 (dz - sym(sgf)))2
- e (27)

$In Fig. 5, all notation follows the convention that super-
scripts within parentheses indicate the layer number of the
associated Adaline or input node, while subscripts identify
the associated Adaline(s) within a layer.

(24)

26

We note that the second term is zero. Accordingly,

2
190 (d; - sgm(sgz)))
2 65&2) '

82 (28)

)
1

are independent yields

_ (2)

(d1 —‘sgm(s(lz))) sgm’ (sgz)).

Observing that d; and s
§2

(29)

We denote the error d; — égm(sgz)), by cgz). There-
fore,

57 = Psgm'(s(V). (30)
Note that this corresponds to the computation of
6{“’) as illustrated in Fig. 5. The value of § asso-

ciated with the other output element in the figure

can be expressed in an analogous fashion. Thus

each square error derivative é in the output layer
is computed by multiplying the output error associ-

ated with that element by the derivative of the as-

sociated sigmoidal nonlinearity. Note from Eq. (19)

that if the sigmoid function is the hyperbolic tan-

gent, Eq. (30) becomes simply

21 -m)). (31)

Developing expressions for the square error deriva-
tives associated with hidden layers is not much more
difficult (refer to Fig. 5). We need an expression for
6%1), the square error derivative associated with the
top element in the first layer of Fig. 5. The deriva-
tive 6;1) is defined by

&2

_1a¢

sV 2 -
! 2 5551) ’

(32)

Expanding this by the chain rule, noting that £?is
determined entirely by the values of s§2) and sgz) ,
yields

[a2 a2 2 5.2 '

2\ 63&2) asgl) Bsg_,z_) ,asgl)

Using the definitions of 6%2) and 6§2) , and then sub-
stituting expanded versions of Adaline linear out-

puts sgz) and sgz) gives
, s dsy)
s = g8 | ()05 34
1 Y1 asgl) Y2 63&1) ()

8
- 6&2) S ((2)+Zw()sgm(s()))
asl i=1
0
+5—5 PEO) (wg? + Z wiDsgm(s(")) :
=1

Noting that a[sgm(sgt))]/ asg-l) =0,i # j, leaves

69) = 6(2)w(§)sgm () + 6(2)w§€)sgm (sgl))
2 2) (2 1
= [0 + 80| sgm' (7). (35)
Now, we make the following definition:
DL DD i) @
Accordingly,
s = e(l)sgm'(s(l)). (37)

Referrmg to Fig. 5, we can trace through the cir-
cuit to verify that 65)is computed in accord with
Egs. (36) and (37). The easiest way to find values
of § for all the Adaline elements in the network is
to follow the schematic diagram of Fig. 5.,

Thus, the procedure for finding §(), the square
error derivative associated with a given Adaline
in hidden layer £, involves respectively multiplying
each derivative §(6+1) associated with each element
in the layer immediately downstream from a given
Adaline by the weight which connects it to the given
Adaline. These weighted square error derivatives
are then added together, producing an error term
€, which, in turn, is multiplied by sgm (s(‘)) the
derivative of the given Adaline’s sigmoid function
at its current operating point. If a network has
more than two layers, this process of ‘backpropagat-
ing the instantaneous square error denva.txves from
one layer to the unmechately preceding layer is suc-
cessively repeated until a square error derivative &
is computed for each Adaline in the network. This
is easily shown at each layer by repeating the chain
rule argument associated with Eq. (33).

We now have a general method for finding a
derivative § for each Adaline element in the net-
work. The next step is to use these &’s to obtain
the corresponding gradients. Consider an Adaline
somewhere in the network which, during presenta-
tion k, has a weight vector Wk, an mput vector X,
and a hnear output sp = Wk Xk.

The instantaneous gradient for this Adaline element
is

- et
Vi W,

(38)

27

This can be written as

. 0e? B¢l Bsi
VE= BWy ~ sk OW; (39)
Note that W and X are independent so
ask 6W{X}, _
W W, Tk (40)
Therefore,
. d¢?
Vi = £ 41
™ (41)
For this element,
1 8¢2
Ok “55; (42)
Accordingly, X
Vi =—26Xp. (43)

Updating the weights of the Adaline element using
the method of steepest descent with the instanta-
neous gradient is a process represented by

Wit = Wi+ pu(—=Vi) = Wi +2u6: X, (44)
Thus, after backpropagating all square error deriva-
tives, we complete a backpropagation iteration by
adding to each weight vector the corresponding in-
put vector scaled by the associated square error
derivative. Eq. (44) and the means for finding 6
comprise the general weight update rule of the back-
propagation algorithm.

There is a great similarity between Eq. (44) and
the LMS algorithm (6), but one should view this
similarity with caution. The quantity &, defined
as a squared error derivative, might appear to play
the same role in backpropagation as that played by
the error in the LMS algorithm. However, & is
not an error. Adaptation of the given Adahne is
effected to reduce the squared output error €2, not
6 of the given Adaline or of any other Adaline in
the network. The objective is not to reduce the
8 ’s of the network, but to reduce £ at the network
output.

It is interesting to examine the weight updates
that backpropagation imposes on the Adaline ele-
ments in the output layer. Substituting Eq. (29)
into Eq. (44) reveals that the Adaline which pro-
vides output y; in Fig. 5 is updated by the rule

Wip = Wi + 2pe(12)sgml(s§2))xk. (45)
This rule turns out to be identical to the single Ada-
line version (18) of the backpropagation rule. This

i

is not surprising since the output Adaline is pro-
vided with both input signals and desired responses,
so its training circumstance is the same as that ex-
perienced by an Adaline trained in isolation.

In our experience, weight initialization and in-
put normalization can strongly affect the training
speed of neural networks. In recent years, we have
relied primarily on a heuristic designed to ensure
that none of the sigmoids will be saturated during
the early stages of training. This saturation can
impede learning since the derivative of a saturated
sigmoid is near zero, and this derivative is propor-
tional to the gradient vector of the corresponding
Adaline. In the input layer, we avoid this problem
by normalizing the input patterns so each compo-
nent is zero-mean with a variance of roughly 0.27.
The weights are then randomly initialized to have
a distribution which is zero-mean i.i.d. Gaussian
with a variance 1.5/N, where N is the number of
inputs to the Adaline being initialized. If the stan-
dard tanh(:) sigmoid is used, this causes the signal
level at the input of each sigmoid in the network to
be distributed roughly zero-mean Gaussian with a
variance of 0.3 when training commences. The out-
put of each sigmoid will then be distributed with
a variance of roughly 0.2, just like the network in-
puts. Due to the linearity of the sigmoid at small
signal levels, the use of relatively low-variance sig-
moid inputs helps keep the size of the derivatives
backpropagated through the network relatively uni-
form, if the number of Adalines per layer does not
vary drastically.

Another weight initialization approach with
which we have had considerable success in many
instances is one devised by Nguyen [14]. This ap-

proach involves choosing the initial weights of each

hidden layer in a quasi-random manner which en-
sures that at each position in a layer’s input space
the outputs of all but a few of its Adalines will
be saturated, while ensuring that each Adaline in
the layer is unsaturated in some region of its input
space.

‘One of the most promising new areas of neural
network research involves backpropagation variants
for training various recurrent (signal feedback) net-
works. Recently, backpropagation rules have been
devised for training recurrent networks to learn
static associations [15, 16]. More interesting is the
on-line technique of Williams and Zipser [17] which

9To do this we merely compute a mean and sample-
variance for each network input over the training pattern set.
Then, for each input pattern vector X in both the training
and generalization sets, we subtract the appropriate mean
from each component, divide by the corresponding standard

" deviation, and multiply the result by the square root of 0.2.

28

allows a wide class of recurrent networks to learn dy-
namic associations and trajectories. A more general
and computationally viable variant of this technique
has been advanced by Narendra and Parthasarathy
[18]. These on-line methods are generalizations of a
well-known steepest-descent algorithm for training
linear IIR filters [19, 11].

| —

Figure 7: Example Truck Backup Sequence.

An equivalent technique which is usually far less
computationally intensive also exists [4, 7, 20]. This
approach, called “backpropagation-through-time,”
has been used by Nguyen and Widrow [21] to en-
able a neural network to learn without a teacher
how to back up a computer-simulated trailer truck
to a loading dock (Fig. 7). The approach used is de-
scribed in detail in another paper in these proceed-
ings [22]. It involved two networks: a neural emula-
tor trained by backpropagation to model the kine-
matics of the truck, and a neural controller trained
by backpropagation-through-time to generate the
required steering signals. The process of backing up
a truck is a complicated and highly nonlinear steer-
ing task. Nevertheless, the controller network was
able to learn of its own accord to solve this problem.
Once trained, the controller network could success-
fully back up the truck from any initial position and
orientation in front of the loading dock.

Summary

The backpropagation algorithm can be employed to
solve a wide range of problems. There is an enor-
mous pool of applications to which it has has been
successfully applied—only a few are mentioned in
this paper—and there are scores more that will be-
come realities in the next few years. Just as neu-
ral networks can be used to emulate the kinemat-
ics of a trailer truck and control its steering, they
can also be used to model and control processes in
the power industry. Likely applications may include
magnetic bearing control to increase generator ef-
ficiency and reduce bearing wear; nuclear reactor
monitoring and modeling for safety; and control of
fuel metering to improve voltage regulation and ef-
ficiency. In the coming years, we expect to see a
growing amount of research on backpropagation ap-
plications in the power industry. In the long run,
we hope and believe the industry will benefit greatly
from the fruits of this activity.

Acknowledgments

This work was sponsored by SDIO Innovative Sci-
ence and Technology Office and managed by ONR
under contract #N00014-86-K-0718, by the Depart-
ment of the Army Belvoir R, D & E Center under
contract #DAAK70-92-K-0001, by a grant from the
Lockheed Missiles . and Space Company, by NASA
under contract #NCA2-389, and by Rome Air De-
velopment Center under contract #F30602-88-D-
0025, subcontract E-21-T22-S1.

References

[1] F. Rosenblatt. On the convergence of reinforcement
procedures in simple perceptrons. Cornell Aeronautical
Laboratory Report VG-1196-G-4, Buffalo, New York,

 February 1960. -

[2] B. Widrow and M. E. Hoff, Jr. Adaptive switching cir-
" cuits. In 1960 IRE Western Electric Show and Con-
" yention Record, Part 4, pages 96-104, August 23 1960.

B. Widrow. Generalization and information storage in
networks of adaline “neurons”. In M. Yovitz, G. Ja-
cobi, and G. Goldstein, editors, Self-Organizing Systems
1962, pages 435-461. Spartan Books, Washington, DC,
1962.

P. Werbos. Beyond Regression: New Tools for Predic-
tion and Analysis in the Behavioral Sciences. PhD the-
sis, Harvard University, Cambridge, MA, August 1974.

Y. le Cun. A theoretical framework for back-
propagation. In D. Touretzky, G. Hinton, and T. Se-
jnowski, editors, Proceedings of the 1988 Connectionist
Models Summer School, pages 21-28, San Mateo, CA,
June 17-26 1988. Morgan Kaufmann. :

D. Parker. Learning-logic. Technical Report TR-47,
Center for Computational Research in Economics and
Management Science, MIT, April 1985.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propagation.

(3]

(4]

[s]

6]

(7

29

el

&)

(10]

(11]

(12]

(13]

4

[15]

[16]

(7]

[18]

(19]

[20]

[21]

[22]

In D. E. Rumelhart and J. L. McClelland, editors, Par-
allel Distributed Processing, volume 1, chapter 8. The
MIT Press, Cambridge, MA, 1986.

B. Widrow and M. A. Lehr. 30 years of adaptive neural
networks: Perceptron, madaline, and backpropagation.
Proc. IEEE, pages 1415-1442, September 1990.

D. E. Rumelhart and J. L. McClelland, editors. Parallel
Distributed Processing, volume 1 and 2. The MIT Press,
Cambridge, MA, 1986.

R. V. Southwell. Relazation Methods in Engineering
Science. Oxford, New York, 1940.

B. Widrow and S. D. Stearns. Adaptive Signal Process-
ing. Prentice-Hall, Englewood Cliffs, NJ, 1985.

L. L. Horowitz and K. D. Senne. Performance advantage
of complex Ims for controlling narrow-band adaptive ar-
rays. IEEE Trans. Circuits Systems, CAS-28(6):562—
576, June 1981.

P. Werbos. Generalization of backpropagation with ap-
plication to a recurrent gas market model. Neural Net-
works, 1:339-356, 1988.

D. Nguyen and B. Widrow. Improving the learning
speed of 2-layer neural networks by choosing initial val-
ues of the adaptive weights. In Proceedings of the In-
ternational Joint Conference on Neural Networks, San
Diego, CA, June 1990.

F. J. Pineda. Generalization of backpropagation to
recurrent neural networks. Physical Review Letters,
18(59):2229-2232, 1987.

L. B. Almeida. A learning rule for asynchronous per-
ceptrons with feedback in a combinatorial environment.
In Proceedings of the IEEE First International Con-
ference on Neural Networks, volume II, pages 609-618,
San Diego, CA, June 1987.

R. J. Williams and D. Zipser. A learning algorithm
for continually running fully recurrent neural networks.
ICS Report 8805, Institute for Cognitive Science, Uni-
versity of California at San Diego, La Jolla, CA 92093,
October 1988.

K. S. Narendra and K. Parthasarathy. Identification
and control of dynamical systems using neural net-
works. IEEE Transactions on Neural Networks, 1(1):4-
27, March 1990.

S. A. White. An adaptive recursive digital filter.
In Proc. 9th Asilomar Conf. Circuits Syst. Comput.,
page 21, November 1975.

B. Pearlmutter. Learning state space trajectories in re-
current neural networks. In D. Touretzky, G. Hinton,
and T. Sejnowski, editors, Proceedings of the 1988 Con-
nectionist Models Summer School, pages 113-117, San
Mateo, CA, June 17-26 1988. Morgan Kaufmann.

D. Nguyen and B. Widrow. The truck backer-upper: An
example of self-learning in neural networks. In Proceed-
ings of the International Joint Conference on Neural
Networks, volume 11, pages 357-363, Washington, DC,
June 1989.

B. Widrow and F. Beaufays. Neural control systems.
In Proceedings of the EPRI/INNS Workshop on Neural
Network Computing for the Electric Power Industry,
Stanford, Ca, August 17-19 1992.

