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ABSTRACT

This paper reviews work on artificial adaptive
neurons done at Stanford University almost 25 years
ago. The development of an adaptive linear threshold
element (ADALINE) and several of of its mathematical
properties are described. Applications were-made to
pattern recognition, speech recognition, classifi-
cation of EKG waveforms, weather forecasting, and to
control systems. An ADALINE element, a single arti-
ficial neuron, was used as a trainable controller to
stabilize an inverted pendulum. This was the origi-
nal adaptive broom-balancer.

The broom-balancer of the future will be a sys-
tem that can learn to balance the "broom" by obser-
ving the real time control decisions made by the
teacher, an expert who knows how to do the control
function. The teacher has access to the critical
control state variables. The trainable system, an
ADALINE network, cbserves the cart and pendulum
through visual (photocell array or TV) inputs and
must of its own accord obtain the relevant state
information by dynamic scene analysis. With an ade-
quate training sample, the ADALINE net will be able
to take over the control function from the teacher
and thus become a trained expert. This research will
lead to a new class of trainable expert- systems.

INTRODUCTION

The original adaptive broom balancer was built

at Stanford University in 1963 by Bernard Widrow, a
young faculty member, and Fred. W: Smith, a Ph.D.
candidate in Electrical Engineering: The purpose of
the broom-balaricer, & working electromechanical *
machine, was to demonstrate the capability of the
ADALINE "neuron" in performing the task of optimal
controller for an unstable system: At that time,
the idea of modeling a component of the nervous
system or of using an “artificial neuron" in an
engineering application was highly controversial.
Funding was difficult to obtain, and the capability
of computer and electronic circuits and systems was
very limited: In spite of all this, considerable
progress was made in 1963, which was reported by

. Widrow and Smith [1] and by Smith [2,3]. Now, al-
most 25 years later, it makes sense to look back at
this work and see where it might go in the future.
The situation today is a different one. The study
of neural nets for computing has gained a worldwide
following, and the advent of VLSI technology makes
their implementation practical.

The purpose of this paper is to review the
status of ADALINE work at Stanford about 25 years
ago, particularly with reference to applications in

‘control systems:

"ADALINE (adaptive linear neuron):

After a review of the old work,
we then show how the concepts could be extended for

the creation of TRAINABLE EXPERT SYSTEMS:
ADALINE, AN ADAPTIVE LOGIC ELEMENT

The basic building block of the systems to be
considered is an adaptive threshold element, some-
times called an adaptive "neuron": For many years,
we at Stanford University have called this element
A functional dia-
gram of this element is shown in Fig: 1: It inclu-

~des an adjustable threshold level and the adaptat-

ion machinery which automatically adjusts the
variable input weights: It has been demonstrated
experimentally and theoretically that this element
can be trained to react specifically to a wide var-
iety of binary input signals and that it can.be
trained to generalize in certain ways, iie, to re-
act as desired with high reliability to inputs that
it has not been specifically trained on:

In Figs 1 the binary input signals on the input

_ lines have values of +1 or -1 rather than the.usual

values of 1 or 0: Within the neuron shown, & linear
combination of the input signals is formed: The
weights are the gains w,,w,:::, which could have
both positive and negative‘values: The output sig-
nal is-+1 if this weighted sum is greater than a
certain threshold, and -1 otherwise: The threshold
level is determined by the setting of the weight w_,
whose input is permanently connected to a +1 sourcg.
Varying Wy varies a constant added to the linear
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combination of input signals:

For fixed gain settings, each of the 2N possi-
ble combinations would cause either a +1 or a -1
output: Thus, all possible inputs are classified
into two categories: The input-output relationship
is determined by choice if the gains w_,:3:, W 3
In the adaptive neuron, these gains ar8 set duping
the training procedure:

n

In general, there are 22 different input-
output relationships or truth functions by which
the n input variables can be mapped into the single
output variable: Only a subset of these, the line-
arly separable logic functions [4], can be realised
by all possible choices of the gains: Although
this subset is not all inclusive, it is a useful
subset, and it is "searchable", i:e:, the "best"
function in many practical cases can be found iter-
atively without trying all functions within the
subset: An iterative search procedure has been de-
vised and is described below: This procedure is -
quite simple to implement, and can be analyzed by
statistical methods that were originally developed
for the analysis of adaptive sample-data systems:[5]

An adaptive pattern classification machine had
been constructed for the purpose of illustrating
adaptive behavior and artificial learning: A phot-
ograph of this machine, which is an adjustable thr-
eshold element (called "KNOBBY ADALINE") is shown
in Fig: 2:

“Knobby" ADALINE

Fig..2

During a training phase, simple geometric pat-
terns were fed to the machine by setting the toggle
switches in the 4 x 4 input switch array: All
gains, including the threshold level were to be ch-
anged by the same absolute magnitude so that the
analog error (the difference between the desired
meter reading and the actual meter reading) was
brought to zero: This was accomplished by changing
each gain in the direction to diminish the error by
1/17: The 17 gains could be changed in any sequen-
ce, and after all changes were made, the error for
the present input pattern was zeros The weights
associated with switches up (+1 input signals) were
incremented by rotation in the same direction as

the desired meter needle rotation, the weights con-
nected to switches in the down position were incre-
mented opposite to the desired direction of rotat-
ion of the meter needles The next pattern and its
desired output was then presented, and the error was
read: The same adjustment routine was followed and
the error was brought to zero. If the first pattern
had been reapplied at this point, the error would
have been small but not necessarily zero: More pat-
terns were inserted in like manners Convergence was
indicated by small errors: ~This is a least-mean-
square [6] adaption procedure (LMS): It requires
that adaption be made even if the quantized neuron
output is correct: If, for example, the desired
response is +1, the neuron is adapted to bring the
analog response closer to the desired response, even
if the analog response is more positive than +1:

The iterative training routine is purely mech-
anical: Electronic automation of the LMS algorithm
andsoftware implementation of it has been widely
practiced [71:

The results of a typical adaption on six noise-
less patterns is given in Fig: 3; During adaption,
the patterns were selected in a random sequence, and
were classified into 3 categories: Each T was to be
mapped to +30 on the meter dial, each G to 0 and
each F to -30. As a measure of performance, after
each adaptation, all six patterns were read in (wi-
thout adaptation) and six analog errors,were read.
The sum of their squares denoted by 3 e~ was compu-
ted and plotted: Fig: 3 shows the learning curve
for the case in which all gains were initially zero:
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It is shown in [5,6] that making full correct-
ion with each adaption using the LMS procedure is
in effect a stable "performance feedback" process
having an adaptive time constant approximately equal
to the number of weights: In the experiment of Fig.
3, the time constant is 17 adaptions: It is also
shown that changing each weight by the same magni-




tude in the appropriate directions is equivalent to
utilization of the method of. steepest descent on a
mean squre error surface:

THE ADAPTIVE MEMORY CAPACITY

An important question was, how many patterns or
stimuli can the single adaptive neuron be trained to
react to correctly at a time? This is a statistical
question: Each pattern and desired output combina-
tion represents an inequality constraint on the
weights: It is possible to have inconsistencies in
sets of simultaneous inequalities just as with sim-
ultaneous equalities: When the patterns (i:e, the
equations) are picked at random, the number which
can be picked before inconsistency is created is a
random variable: As few as 2 patterns can form a
nonllnearly separable set, regardless of the pat—
tern size:

A series of experiments was devised by J. S:
Koford and R: J: Brown where patterns containing
unbiased random bits and random desired responses
were applied to ADALINES with varying numbers of
inputs. It was found that the average number of
random patterns that can be absorbed by an ADALINE
is equal to twice the number of weights. This is
one basic measure of memory capacity. It was pro-
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Fig. 4 Memory Capacity of an ADALINE

ven by Cover [8] and Brown [9] that this experiment-
al result is rigorously correct: Analytical curves
showing the probability of being able to train-in N
patterns as a function of N/(n+1) are presented in
Fig. 4. Notice the sharpening of the break point of
these curves at exactly the average capacity as the
numbers of inputs to the ADALINE increases:

GENERALIZATION EXPERIMENTS WITH ADALINES

With suitable pattern-response examples and the
proper training procedures, generalizations can be
trained into ADALINES: The kinds of generalizations
that had been done were insensitivity to noise and
to translation, rotation, and size. ADALINES were
trained to react consistently to a training set of
patterns for all possible positions, for example,
and then they reacted consistently in all positions
with high reliability on new patterns never seen
before: ;

Generalization with Respect_to Noise

Statistical separation of patterns consisting
of a finite set of basic "prototypes” and noisy

versions of these basic patterns can be readily acc-
omplished by the single ADALINE after training on
the basic patterns and/or samples of the noisy patt-
erns: A new pattern would be associated with one of
the prototype classes by proximity in a Hammlng dis-
tance sense.

With the objective of minimizing the probabili-
ty of incorrect classification, there is an optimum
set of weights that would result from training on-a
very large sample: The effect of training on a small
sample set can be summarized with the following for-
mula, derived in [5,61:

_Mh+1)

The number of training samples is N, randomly sele-
cted from all possiole samples, and the total num-
ber of weights is (n + 1): - The quantity M is called
the "misadjustment”: In this context, it is the per
unit increase in error probability, based on a mini-
mum error probability attainable by training on a
very large sample: This formula leads directly to
the idea that the number of- patterns required to
train an ADALINE to discriminate noisy patterns is
about five times (making M only 20 percent) the num-
ber of weights: The number of training patterns re-
quired to produce this form of generalization is of
the order of twice the statistical memory capacity.

Generalization with _Respect to_Rotation of Patterns

Insensitivity to retation by 90° is a character-
istic that can be perfectly trained into an ADALINE:
An experiment was made as depicted in Fig. 5 by
using the 4 x 4 KNOBBY ADALINE shown in Fig: 2. C's
rotated in all four positions were trained-in to
give +1 response, while T's were trained-in to give
the -1 response in all four rotations. The initial
weights were set to zero, and during training, the
minimum mean-square error adaption procedure with an
adaptive time constant of 32 patterns was utilized.
The process converged with the desired responses
trained-in precisely, and the set of weights shown
in Fig: 5 resulted. Without further training, new
patterns totally unrelated to the training patterns
were inserted, and it was observed that not only were
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Fig. 5 Training Insensitivity to
‘Pattern Rotation
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the decisions made by the ADALINE perfectly consist-
ent for each pattern over the four rotations, but .
the four meter readings (confidence levels or analog
outputs) for each pattern were identical. The rea-
son for this is simple: Rotation of the weights by
90° yields an identical set of weights. Let the a-
matix represent the set of weights (not including
the threshold weight). The threshold weight remains
the same for all rotations. The superscript R rep-
resents rotation by 90°.

R
ol = 1a1" = [1*]" = [["]"] @

Generalization with Respect to Left-Right Translation

at
rre

lizati
Perfect solutions to the problem of training an
ADALINE to be insensitive to left-right.pattern shift
exist. A solution requires the columns of the a-
matrix to be identical. On a 4 x 4 input array,
there is a choice of 4 independent weights, each
choice setting a row of weight values. It follows
that the statistical discrimination capaeity- subject
to the constraint of insensitivity to left-right
translation is that of a 4-input ADALINE or 8 basic
patterns. The total capacity of the 4 x 4 ADALINE -
is 32 patterns, and this corresponds to the four
positional possibilities for each of the 8 basic
patterns. Patterns can be placed in four positions
by considering the input pattern space to be conti-
nuous and folded over a cylinder having a vertical
axis.
Generalization with Respect to Pattern Size

An ADALINE can be trained to be highly insensi-
tive to pattern size. The training procedure requ-
ired slow minimum mean-square-error adaption: In
Fig. 6, a set of "small" and "large" patterns is
shown that comprised examples for the training ex-
periment. On a 3 x 3 array in the upper left hand
corner of a 4 x 4, a T and a C were inserted as
shown. " In the full 4 x 4 array, expanded versions
of these patterns were trained-in to give correspon-
ding responses. After training, it was found that
new patterns gave widely fluctuating analog respon-

ses. For about 90 percent of new pattern inputs, the
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Fig. 6 Training Insensitivity
to Pattern Size
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same binary response- resulted for the small as for -
the large versions, and the corresponding confldence
levels were extremely close.

To be perfectly insensitive to'size, the weights
of an ADALINE must be such that an element of area
of the small pattern "sees" the same total weight
(input patterns are thought of as continuous two-
dimensional functions and weights are thought of as
continuous distribution functions) as the correspon-
ding area element of the large pattern that it maps
into. It can be shown that perfect solutions result
when the weight function radiates from a point and
has an intensity that decays with an inverse-square
law. These effects are approximated in the welghts
of Fig. 6.

PATTERN RECOGNITION APPLICATIONS

In addition to the applications to automatic
control systems which will be described in' the next
section, the above principles have been applied to
weather forecasting [10], speech recognition [11],
and diagnosis of EKG waveforms [12,13].

N APPLICATION TO CONTROL SYSTEMS

The state of a dynamic system can be completely
described at any instant by the values of the state
variables of the system. (The state variables of a
control system are such quantities as the error, the
error derivative, etc.) A control decision therefore
need depend only on the present values of the state
variables. The value of each state variable can be
encoded as a sequence of binary digits. The collec-
tion of these encoded state variables forms a patt-
ern: Proper control of a dynamic system by an ADA-
LINE or a network of ADALINES becomes a matter of the
proper classification of the patterns which represent
the different states of a dynamic system. Just as an
ADALINE can be taught to classify patterns into two
groups, it can also be taught to control a dynamic
system in a "bang-bang" or +1, -1 manner.

When the state variables are encoded using what
has been called a "linearly independent code", the
task of learning control strategies is quite natural
for an ADALINE.

(i) The large sets of patterns representing the

“control strategy for all possible regions of state

space are often linearly separable, or separable with
simple ADALINE networks. The number of control pat-
terns which the ADALINE is able to correctly classify
is generally an order of magnitude or more greater
than its statistical capacity.

(ii) The ADALINE generalizes in a known and
predictable way. Namely, the ADALINE can correctly
classify ‘all the patterns of a control strategy after
learning to correctly classify only the patterns
bordering on the switching surface.

Because of this strong generalizing property and
because of the special interrelationships among the
many patterns, the ADALINE-is much easier to train
than it would be for a similar number of random or
near random patterns.

Fig. 7 shows in block diagram form the general




situation in which an ADALINE would be used as a
trainable controller for a dynamic system. The
state variables Yqseeoyy, are assumed to be the sys-
tem error.

The teaching controller is capable of perform-
ing the control function while supplying the desired
output to the ADALINE during its training period.

This controller could be an automatic controller or
possibly a human expert. The ADALINE controller and
the teaching controller need not have the same inputs,
provided both receive the same or related informa=-
tion. For instance, the ADALINE controller could be
receiving the state variables as electronic signals
while a human teacher could be receiving informat-

ion about the system by.actually watching its motions,

For the purposes of discussion the teacher
will be assumed to be represented by a function
f(yss--esy_ ). The switching surface f(y,,...y ) =0
deséribes Phe transition where the teachér chaﬂges
his reaction from "force plus" to “force minus".
During the training, the ADALINE analog output
f(y,s...y ) is adjusted so that its switching sur-
facd f(y,M...y ) = 0 is made to approximate the
switchiné surfice of the teacher.

The ADALINE controller consists.of an encoder
and an ADALINE. - For simplicity, a single ADALINE
is shown here in the controller; more typically a
network might be used. The network with its encod-
er is basically a trainable function generator which
forms the function f(y,,...y ). The pattern inputs
to the network change éontinﬂally as the state vari-
ables change. The encoder produces patterns by qua-
ntizing or dividing the range over which each of the
state variables varies into a finite number of zones.
Each zone of a state variable y. is represented by a
binary -number or partial patterﬁ. The m partial pa-
tterns make up the total pattern.

Fig. 8 illustrates the quantization of a two-
dimensional state space. Each square in the figure
is represented by a particular pattern for the ADA-
LINE. The continuous curve f(y,,y¥,) = O represents
a typical desired- switching surfacé (a curved line:
in this case). The jagged curve f(y,y,) = 0 is the
switching curve that an ADALINE cont}o ler might use
to approximate the teaching controller.

The system has two modes of operation:
(i) During the training mode, the teaching
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Fig. 7 ADALINE Controller:
Expert System"

controller, an expert, controls the dynamic system.
The adapt logic 'in the ADALINE continuously compares
the binary output of the ADALINE with that of the
teacher. Whenever they differ, the ADALINE is adap-
ted in the direction which would make them agree.
Because the patterns change rapidly, there may not be
time for a full correction. However, the pattern is
bound to recur, at which time adaption can be contin-
ued. During the training mode the ADALINE controll-
er "watches" the teacher in order to zero the error
after various large disturbances or large initial
conditions.

(ii) During the ADALINE control mode, the tea-
ching controller is not used and may be completely
removed from the system. The ADALINE then is a "tra-
ined expert system", performing the control function.

TEACHING CONTROLLER - Yp t<oAND T<O

SWITCHING LINE ON THIS SIDE OF
flyy ye) * O [ SWITCHING LINE
f
|
|
T
ADALINE CONTROLLER
T SWITCHING LINE
Pty Y00
V4 — "
I
!
F !
i
I l
>0 aND T> 0
ON THIS SIDE OF
SWITCHING LINE

Fig. 8 An ADALINE Switching Function and
Teacher's Switching Function

Coding

- The-choice of codes used to represent the values
of the state variables largely determines how well
the ADALINE controller will be able to imitate its
teacher. Fig. 9 illustrates two possible "linearly
independent codes". A linearly independent code is
any code which has a nonsingular partial pattern
matrix. This matrix has the-partial patterns as rows
plus a‘column-of ones (if necessary). The partial
pattern matrix for the ‘codes of Figs. 10a and b are

respectively: 000 1 191 1
e 0°010 1110
0100 “1.1.00

1000 1000

Both matrices are obviously invertible. When linea-
rly independent coding is used, the ADALINE will be
able to exactly imitate (except for quantization eff-
ects) any teacher.whose function does not contain
cross-product terms, i.e., terms of the form y.y.,i=
j» regardless of the number of patterns. This'id a
consequence of encoding each state variable indepen-
dent of ‘the others. An ADALINE with encoded inputs
is shown in Fig: 10.
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An_Example_of An_Adaline Controller

The above ideas can best be illustrated by sho-
wing how an ADALINE controller would control the osc-
illatory undamped second-order system with differen-
tial equation

The minimum-time optimum-switching curve is the well-
known Bushaw [14] switching curve, the teacher swit-
ching curve shown in Fig. 11. A controller contain-

TEACHER SWITCHING
Ve CURVE Ys :
10 m.m Fe-l ;
i  ADALINE CONTROLLER
i ‘ . WITCHING CURVE
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10120
k
. [ 1w ||
2 =T ="
o1
-10l-20 @ fit)
Fig. 11 ADALINE Approximation of the

Bushaw Switching Curve

_defined in Fig. 12.

ing one ADALINE is capable of closely approximating
the nonlinear function of the optimum controller.
The switching curve of the ADALINE controller is
shown in Fig. 11 with functions f,(y IRATRIACAR

171 Y22
and fz(yz). ‘

To demonstrate these ideas, a relatively complex
dynamic system with an ADALINE controller had been
assembled in 1963. The dynamic system was a motor-
ized cart carrying an inverted- pendulum.  The contr-
oller for the system was required to keep the pendu-
lum balanced.and keep the cart within certain bounds -
by applying a horizontal force to the cart. An ADA-
LINE circuit utilizing electrochemical weights called
Memistors [15] was used in the training controller.
Fig. 7 gives a block diagram of the dynamic system
and its controllers. The nonsingular transformation
in Fig. 7 is the identity transformation in this case.

"Broom-Balancing Machine!

The cart and pendulum system was an undamped and
inherently unstable fourth-order dynamic system. The
four-state variables were the angle of the pendulum
from vertical, 8; the rate of change of angle 8; the
position of the cart, x; and the rate of change of
position x. These and other relevant quantities are
The linearized differential
equations representing this system were:

..’7—3_9 -i
O=23f — am®
5=%F

It was assumed that there was no damping, and that
the reaction of the pendulum motions on the cart was
negligible. : . '

The teaching controller used in these experim-
ents had a linear switching surface approximately
f=—206—106+ 1.0z + 1.0z

"The ADALINE controller contains one 24-input ADALINE.

The range of each of the state variables was divided
into seven approximately equal zones. The state var-
iables were encoded into 6-bit partial patterns using
a linearly independent ‘code similar to the one illus-
trated in Fig. 9b. The controller was taught by
having it observe the teacher return the system to
the origin of state space after it had received var-
ious large disturbances.

m = MASS OF PENDULUM
M s MASS OF CART

£ = DISTANCE FROM PIVOT TO CM
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F
t 1 —
~Xu | ) Xpy
-
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Fig. 12 The Cart with Inverted Pendulum
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THE BROOM—BALANCER OF THE FUTURE: A
TRAINABLE EXPERT SYSTEM

In the utilization of present-day rule based
expert systems, decision rules must always be known
for the application of interest. Sometimes there
are no rules however. The rules are either not ex-
plicit or they simply do not exist. For such appli-
cations, trainable expert systems might be usable.
Rather than working with decision rules, an adaptive
expert system might observe the decisions made by a
human expert. Looking over the expert's shoulders,
an adaptive system can learn to make similar decisi-
ons to those of the human when facing given sets of
input circumstances.

A sample application for a trainable expert
system is the following: Driving a car down a narr-
ow congested street is done every day by experienced
human drivers. Imagine an adaptive pattern recogni-
tion system equipped with a visual input (a retina
of pheto receptors or a TV camera) looking through
the windshield of the car seeing the dynamic scene
confronting the driver and at the same time obser-
ving the driver's responses via the steering wheel,
brake pedal, and accelerator pedal. With an adeq-
uate training sample, the adaptive system should be
able to make decisions very much like those of the
teacher.

Instead of developing at this time a system to
learn to drive a car in traffic, a simpler and more
quantifiable problem to begin with is the broom-
balancing problem. Refering to Fig. 13, a train-
able controller consisting of an ADALINE network
learns to respond like the teacher by observing the
teacher's control decisions. However, the teacher
has the proper state variables as its set of inputs.
The ADALINE net has an "eyeball" input, a photocell
retina or a TV camera, with which to observe the
positions and motions of the cart and the pendulum.
Acting on its own, the ADALINE will need to obtain
the equivalent state-variable information from vis-
ual observations of the scene and its time rate of
change, the scene being the picture of the cart and
the pendulum. With an adequate training sample, the
ADALINE net will be able to take over the control
function from the teacher and thus become a trained
expert.

It is not known how to design the ADALINE net-
work to solve the broom-balancing problem. Doing
the research to develop.an adaptive controller of
this type will enable us to progress toward the goal
of being able to design trainable expert systems for
much more general applications. Members of govern-
mental laboratories, industrial laboratories, and
university laboratories who would like to engage in
this work are encouraged to contact Professor Widrow.
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