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Abstract - A general purpose linear phase adaptive
filter is presented. The filter allows the use of
either positive or negative impulse response sym-
metry to invoke a linear phase response. It is
shown that for a particular choice of inputs, a
linear phase adaptive line enhancer can be real-
ized. '

I. Introduction

Adaptive methods have been used to conmstruct a
number of diverse signal processing structures. A major-
ity of these structures are based on the adaptive linear
combiner shown in Fig. 1. When the X-vector input for
the linear combiner is generated as shown in Fig. 2 , a
general purpose FIR adaptive filter results. This adap-
tive filter is the basic building block for signal processing
techniques such as noise canceling, array processing, line
enhancement, channel equalization, spectral estimation,
adaptive control, and system identification [1-5].
_ Often in the above schemes it is important that the
output of the adaptive filter maintain the relative phase
relationships of its spectral components, thus requiring
that the filter be linear phase. In [6], Friedlander and
Morf describe an adaptive linear phase smoothing filter
which estimates a signal based on advanced and delayed
samples of that signal. A common use of such a structure
is the adaptive line enhancer [1] which we will show to be
a special case of the general linear phase adaptive filter.
This correspondence details a general purpose linear

phase adaptive filter originally presented by Widrow et al
in [7] and discusses its specialization to a linear phase
predictor, hereafter referred to as a linear phase adaptive
line enhancer (ALE). A simulation of the linear phase
adaptive filter in a channel equalization -application is
also presented. s

II. An Adaptive Linear Combiner

The adaptive linear combiner shown in Fig. 1 uses a
linear combination of n inputs to form a ‘‘best” estimate
of some desired response input.
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Fig. 1 - An adaptive linear combiner.
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Let the n input signals define an X-vector given by

XF = [2ij 2y~ 2] @
Also let the weighting vector be defined as
WE = [wy; wy; -+ wy;] 2
Then the linear combiner output is
n
Y = 3 Wy
k=1
= Wlx; (3)

The error between this output and the desired response
input is

€ = di-y;

4 - WEX; 0

The best estimate of d; is found by minimizing the mean
square of the error ¢;.

One of the most popular methods for iteratively
minimizing the mean square error is the LMS algorithm
[8]. This gradient-descent type algorithm updates the
weight vector using an approximate gradient according
to,

Wj+1 = Wj‘l"éj (5)




The estimated gradient is the instantaneous gradient of
the squared error and is given by

Egs. (4-6) form the LMS algorithm. The stability and
convergence of this algorithm has been extensively stu-
died by Widrow in 8] and more recently by Horothz and
Senne in [9].

Another method for updating the weight vector is
the well-known recursive least squares (RLS) algorithm
[10,11]. It can be shown that this algorithm is equivalent
to a Newton-type LMS algorithm [12] of the form,

Wis1 = aR1+l Vi o

Y]
where the approximate gradient vector is premultiplied
by an approximation of the inverse correlation matrix.
The approximate gradient vector is the same as that used
in the LMS algorithm. The approximate correlation
matrix is determined by taking an exponentially win-
dowed sample average of the input data,

Ry = (1-0)R; + aX;XT (8)

To find the inverse of this estimate, the matrix inversion

lemma [11] is applied to eq. (8) giving,

R P o -l A
(1-a) + a~X]-T-RJTl-Xj

Rl :
i+1 1-o 7

Egs. (6,7,9) determine the RLS algorithm.

The RLS algorithm is computationally more com-
plex than the LMS algorithm but offers an improvement
in convergence rate when the eigenvalue disparity of the
input correlation matrix is large [8]. For many applica-
tions the simple LMS algorithm is the preferred method.

II. A Linear Phase Adaptive Filter

Fig. 2 shows the linear combiner X-vector input
required to realize an n-tap FIR adaptive filter.
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Fig. 2 - Unconstrained linear combiner input with sample
impulse response.
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When this X-vector is used with the adaptive linear com-
biner of Fig. 1, a general purpose adaptive filter results.
Since the filter impulse response is not symmetrically con-
strained, its phase response will not necessarily be linear.
Fig. 3 shows the n-element X-vector input required
to realize a positive symmetry linear phase adaptive filter.
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Fig. 3 - Constrained linear phase positive symmetry
linear combiner input with sample impulse response.

Two subcases of this positive symmetry exist [13]. The
first is called the on-tap symmetry case since the filter
coefficients are symmetric about the center tap of the
tapped delay line (TDL). In this case, the TDL has an
odd number of taps. Each of the first n—1 X-vector ele-
ments is the sum of two TDL outputs chosen symmetri-
cally about the center tap. The center tap output is used
as the last element of the X-vector. The other case is
called mid-tap symmetric since the filter coeffigients are
symmetric about a point midway between the two center
taps of the TDL. Here, the TDL has an even number of
taps. Again, each X-vector element is the sum of two
TDL outputs, with the sums chosen symmetrically about
the mid-tap center of the TDL.

Flg 4 shows the n-element X-vector required to real—
ize a negative symmetry linear phase adaptive filter.
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Fig. 4 - Constrained linear phase negative symmetry
linear combiner input with sample impulse response.

In the on-tap negative symmetry case, each X-vector ele-
ment is the difference between two TDL outputs chosen
symmetrically about the center of the TDL. Note that
the center tap output of the TDL is not used. The
resulting linear phase filter will have an impulse response
of length 2n+ 1, with the center coefficient set to zero.
In the mid-tap negative symmetry case, each X-vector
element is the difference between the two TDL outputs
chosen symmetrically about the mid-tap center of the
TDL. The filter impulse response will be of length 2n.

It is easily seen that the transfer function of a linear
phase FIR [13] filter with positive symmetry can be writ-
ten as, :

.m-1

H(jo) = Rw)e ® (10)

where R, is real and m is length of the filter impulse
response. ‘Similarly, the transfer function of a linear
phase FIR filter with negative symmetry can be written
as, ;

m-1

. R =5
H,(jw) = jR,(w)ye ? (11)
Note that the phase response of the negative symmetry
filter is the sum of an exact 90° phase shift plus a linear
phase term.
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Fig. 5a shows both the X-vector input and the
desired response input required to realize an adaptive line
enhancer with a A-step decorrelation delay [1].

Desired
Signal

X-vector

A Null Taps
g e— Ld . 3

Input Tapped Delay Line

X-vector Desired

Signal

... ¥
DG G .

\ \
\

A Null Taps
—

[1---]

Tapped Delay Line ,

(b)

A Null Taps
——
[1---1]

Input QL

Fig. 5 - Linear combiner inputs required for Adaptive
Line Enhancer (ALE).
(a) unconstrained ALE
ALE.

(b) constrained linear phase

Forming the X-vector as shown in Fig. 5b results in a
linear phase adaptive line enhancer. Each X-vector ele-
ment is the sum of two TDL outputs chosen symmetri-
cally about the center tap of the TDL. The center out-
put of the TDL is used as the linear combiner’s desired
response. The resulting adaptive structure will estimate
the signal at the center-tap output of the TDL, based on
delayed and advanced samples of that signal.

The linear phase adaptive smoother discussed by
Friedlander and Morf [6] is a special case of the linear
phase ALE with a decorrelation delay of one. In their
paper they show that for a stationary stochastic input,
the Wiener solution of the smoothing filter will be linear
phase. Thus, using constrained linear phase to reduce the
number of computations will not sacrifice the quality of
the solution. It has also been shown that using a smooth-
ing filter rather than a predicting filter can improve the
convergence rate of the LMS adaptive algorithm [14],
further motivating the use of the linear phase ALE.

IV. Simulation

In this section we present a simulation of the linear
phase adaptive filter applied to baseband channel equali-
zation. A block diagram of the simulation is shown in
Fig. 6.
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Fig. 6 - Block diagram of a linear phase baseband channel
equalization simulation.

The system consists of a transmitter, an imperfect but
linear phase transmission path (the channel), and a linear
phase adaptive equalizer. The goal of the equalizer is to
“undo” the signal distortion caused by the 1mperfect
channel.

It should be noted that most channels encountered
in practice will not be linear phase. The purpose of this
simulation is not necessarily to show a practical applica-
tion of the linear phase adaptive filter, but to demon-
strate its feasibility.

For this simulation, the channel is a linear phase
filter with a 30 dB rolloff at both high and low frequen-
cies, modeling the limited frequency response of a typical
transmission path. The impulse response of the simu-
lated channel is
{.014, -.002, -.073, .010, .233, -.021, -.463, .024, .667, .024,
-.463, -.021, .233, .010, -.073, -.002, .014}.

* Uniformly distributed white noise with variance 30 dB
below the signal is added to the channel output, simulat-
ing the effects of a noise corrupted channel.

The transmitter signal consists of the random {+ 1,-
1} sequence shown in Fig. 7a.
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Fig. 7 - Time waveforms of linear phase adaptive channel
equalizer simulation using LMS algorithm.
(a) channel input  (b) channel output
output

(c) equalizer

From Fig. 7b, it is evident that the limited frequency
response of the channel has caused the channel output to
be quite distorted. When the channel is close to linear
phase, as is the case in this simulation, it can be shown
that a linear phase equalizer will perform well in restoring
the original transmitted signal shape. For this experi-
ment, a positive on-tap symmetric linear phase adaptive
filter was used as the equalizer. The total impulse
response length was 9, which translates into a 5-weight
adaptive linear combiner. Note that the linear phase
constraint reduces the number of adaptive weights by a
factor of 2. For this experiment, u was set to .002.

In a typical adaptive equalizer application, the equal-
izer is adjusted by generating a synchronized training sig-
nal at both the transmitter and receiver locations. This
signal is used directly as the transmitter signal and in a
delayed form as the desired response signal for the adap-
tive equalizer. The delay, shown in the bottom half of
Fig. 6, is chosen to be equal to the total delay through
the cascade of the channel and the equalizer. In this case
the delay was chosen to be 13 sample instants. Fig. 7¢
shows 240 iterations of the start-up transient of the adap-
tive equalizer output, along with 60 iterations of the
equalizer output after convergence. The sloped dotted
lines intersect equivalent points of the signals, illustrating
the delays due to the channel and equalizer. After about
120 samples, the equalizer has improved the signal to the
point where a simple zero-crossing algorithm could restore
the transmitted signal exactly. After the equalizer has
converged, its weights are fixed and the equalized channel
can be used for normal data transmission.

V. Conclusion

In this paper we have shown that a linear phase
adaptive filter can be realized by supplying the well-
known adaptive linear combiner with the proper choice of
X-vector input. A new adaptive algorithm is not
required. Although simple in derivation, the linear phase
adaptive filter presented in this paper is expected to be a
popular addition to the existing set of tools now used by
the signal processing community.
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