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Summary

" A structure comparable to a "transfer
function" for statistics in linear systems.is
developed so that, given a system input charac-
teristic function, the high-order output charac-
function is directly expressible as products of
functions similar to that of the input. Emphasis
has been placed on samples and sampled-data
" systems because sampled signals are easy to de-
scribe statistically. The results apply to the
continuous case when the sampling rate is made
high enough to satisfy the Nyquist sampling
theorem.

The "memory" of sampled-data filters causes
output sequences to be high-order processes.
Distinctions are drawn between those which are
Markov and those which are other kinds of high-
order processes.

Introduction

In many system analysis and synthesis
problems, it has been found that a statistical
point of view gives averages which contain most
of the important features of situations, and are
much fewer in number than the number of situations
from which they are taken. This paper is con-
cerned with the following: Given the statistics
of a random stationary signal at the input of a
system, find those of the system output. The
problem area will be restricted to dealing with
linear sampled-data systems. Of interest are
moments and distribution densities (and their
Fourier transforms, or characteristic functions).
A system model will be sought that will serve as
a "transfer function" for statistics.

The statistical characteristics of a sampled
signal may be clearly defined by a joint prob-
ability density distribution, where the joint
probability density is a function of as many
variables as there are samples in a row that are
statistically related. This number will be called
the order of the random process. This order be-
comes infinite for a continuous signal, which may
be considered the limiting case of & sampled
signal. It can be shown that the complete statis-
tical description of a continuous signal or any
statistical aspect of same can in principle be
derived from the joint probability density of its
samples as long as the Nyquist sampling theorem
was satisfied when taking the samples. It is
thus possible to assign an order to a continuous
process equal to that of its samples when the
sampling theorem is just satisfied. In any event,
it is much simpler and more practical to deal with
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statistics of sampled data than continuous.

.Actually, knowledge of what happens every now and

then is usually adequate when one is only interes-
ted in statistics.

A linear sampled-data system gives. output
samples at regular "sample times" which are a
linear combination of the present and the past
input samples. The coefficients of this linear
combination make up the weighing function or the
unit impulse response, which completely describes
the system. An alternative system description is
the transfer function, the transform of the
impulse response. The transfer functions of
sampled-data systems are always periodic in the
"S-plane," repeating for every increment to real
frequency of the radian sampling frequency. The
frequency-domain description will not be used
here, as the impulse response idea is the better
approach to statistical propagation.

- Before deriving system output characteristic
functions and distributions, it would be well to
take a detour and discuss the first and second
moments of this output signal. These are its
mean and mean square.

Derivation of Output Moments

The mean of the output is the mean of the
input multiplied by the sum of the impulses of
the unit impulse response. This is true regard-
less of the order of the input. When the input
is first order (all input samples statistically
independent of each other, and average is zero),
the mean square of the output is the mean square
of the input multiplied by the sum of the squares
of the impulses of the impulse response; again,
when the input is first order, the mean cube
(third moment) of the output is that of the input
multiplied by the sum of the cubes of the impulses
of the unit impulse response. Any odd moment may
be found in like manner provided that the input
is first order. Higher even moments may be found
with a slight modification of this procedures.

An example of a sampled-data system driven by

a random input is shown in Figure 1. The average
output response sample is
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If the system of Figure 1 is a sampled "equivalent"
of a continuous system, the size of the average
output impulse is a measure of the average of the
continuous envelope. If the input is first order,
the mean square of the output is
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Equation (2) comes from the idea that the Tilter
output is a linear combination’ of past inputs, -
where each input is independent and has the same
expected variance. a?he effective mean square
contribution of a pst. input. sample is its mean
~multiplied by- the. square .of the factor by which it
is weighed in forming the output. 1In like manner,
the mean cube is
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First order random signals are quite common
in systems. They are the easiest to deal with and
could often approximately represent higher order
processes. When the input is first order, the
mean and variance of the output are very easy to
get for linear sampled-data systems (all that is
involved is summing geometric series) and are
usually the most important features. If it is
known that the output signal is Gaussin distribu-
ted and high order, the first order aspect of the
output is completely determined by the mean and
variance. The output will be Gaussian if the in-
put is Gaussian. The output will be approximately
Gaussian if the impulse response of the filter has
about a half dozen or more impulses having magni-
tudes that are of the same order as the largest
impulse magnitude. The authority for this is the
Central Limit Theorem.

Derivations of Output Characteristic
Functions for First-Order Inputs

The next subject to be considered, the main
subject matter of this paper, is how to derive an
exact expression for the characteristic function
of the filter output given that of the input.

This will be done for first-order inputs, and will
be indicated for higher order inputs. The filter
outputs will always be higher order than first.
The discussion will commence, however, with the
derivation of first order characteristic functions
(c.f.) of the filter outputs. .

First-Order Output Characteristic Functions

Consider the sampled-data system of Figure 2,
as driven by a first-order -input having a distri-
bution density W(x) and a cifv

e Coga§
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The input signal is really x(t), but the "signal®
of interest-here is W(x) of its transform F_(¥).
The output is a linear combination of the present

“input and the three preceeding inputs, all being

statistically independent for the first-order
input. The output c.f. is as in equation (4).

F ($)= B R(LT) B (e S (Uf)
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The c.f. of the sum of independent quantities is
the product of their c.f.'s, and the c.f. of a
quantity after a scale change by the factor "a"

is F (a¥), if the original c.f. were F (T ).
Thus, the first-order output c.f. will always be
a product of c.f.'s if the input is first order.
The output of the sampled-data filter of Figure 2,
is a fourth-order process because the present out-
put sample is statistically related to the three
previous output samples. The next problem is to
derive the fourth order c.f. of the output, given
the first order c.f. of the input. It is necess-
ary to take a detour here and develop a general
mathematical "gimmic" for the calculation of the
joint c.f. of statistically related variables.

Calculation of High Order Characteristic Functions

Consider the two first-order statistically
related variables r_ and r_, shown in Figure 3.
Sums of these variables will be first order proce-
sses whose c.f.'s will depend on their mutual
relationship. It is possible to determine an
arbitrary point on the two-dimensional c.f. by
calculating the one-dimensional c.f. of an approp-
riate linear combingtion of the two variables.

By definition, the two-dimensional c.f. is

given in terms of the two-dimensional distribution
density w(ro,r_l) by the Fourier transform (5).

one (5,5.) =

T S $ T )
.jijnu(ﬂé;ﬂi/)fz/ ! ;LA/ "y
- . 4 -/

(%)

115



The one-dimensionsl ¢.f. of a linear combination
of r_and r _; ie, (k r_*k_ .r_,) is given by
equagion (65 °o° -1

Fz(f’)= ffwf%,@,)é
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Equations (5) and (6) are expressions for very
different things which practically look alike. It

“"f6116ws that. the value of Fr ,r l(fr 'f_ ) can be.

obtained from Fg(¥) by "adjustment®’of k_ and
k-l and a choice of ¥ such that k ¥ = and -

1§=%_;+ This "gimmicv will Be applied to the
investiga%ion of the statistical relation between
adjacent (in time) samples at the output of a
linear filter. . .

C.f. of Output of One Msmory-State Filter

A simpler finite-memory filter than the one
in Figure 2 results when the impulse response has
only two impulses, ie., ¢ = d = O. The output
equals "a" times the present input plus "b" times
the previous input. The filter action is sequen-
tial, but it can be represented combinationaly by
the flow graph of Figure 4.

In Figure 4, the ‘cards are laid on the table.
It is.possible to show present and past inputs and
outputs in addition to how outputs are formed from
inputs. The input nodes make up an "analog step-
ping register." A new input sample appears at the
node "x " each sample time, while all the o0ld in-
put samples are indexed down by one node. All in-
put samples are assumed to be statistically indep-
endent of each other and, since the input process
is stationary, have the same statistical expect-
ations.

It can be seen from Figure 4 that r_and T,
are statistically related, because they ﬁave some-
thing in common. On the other hand, r, and r_
have nothing in common, and because the input
samples are first order, r, and r_, are unrelated.
The output is second order, having an order one
greater than the input because of the one memory-
state of the filter. The second-order distribution
W(rysr_;) or its c.f. completely describes the out-
put process.

Fror (§,,T.1) will be derived by using

the above "zimmic" and the construction of Figure 5,

a modification of Figure 4. "3" is a linear
combination of the independent signals x ,x , and
X_,+ Therefore it has the c.f. of equatgon %7), a
product of three factors.

B (- Rl f)R[ex SR @k §) 0

By making the substitutions of equaticns (8)

BT
(8)
k;,§=? f;l

The desired F_ ,r l(fo’ f;l)»results as equation
(9). o

e 5, 8.0 =BG )RGEE, )RG5, ) )

" _An example should do well to tie down this

‘idea. For simplicity, let the input be Gaussian

such that

- el
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The two~dimensional output c.f. is given by

the equations (11) by direct substitution in
equation (9).
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This c¢c.f. is two-dimensional Gaussian, having a
mean square (secogd Qoment of first-order distri-
bution) of (1 + a“)o" and a correlation coeffi-
cient of =+ It is a general result that
Gaussian /¥ % input of any order will give a
Gaussian output. This is true because higher
order outputs will also appear as products of
factors, and products of Gaussian factors are
still Gaussian.

Third and Higher Order OQutput C.f.'s

The next more general problem is that of a
filter having two memory states. The output is
the present input plus "a" times. the previous
plus "b" times the next previous input. The app-
ropriate construction for the calculation of
F o, §-1 f_z) analogous to Figure 5

? ?

TsT_1sT_ (f
is Figure g. The output can be seen to be third

order. There is statistical connection between
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r and r_, because they have something in common.
1fkewise Tor r, and r ., since they share a signal
emanating from X_oe Tgis is not so for r, and
however.
¥idn Figure 6
F.(8)- RS Rfett JS] [0k TR 4 ]

Fulork ) E R rah 5] (D

By substituting

K €-5,

K f,f_’— (- | o : ((_/3);
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If for example the inpgt is first-order Gaussian
having c.f. of(f 5~ » the output c.f. will be
the three-dimension Gaussian form of squation (15)%

F/-l/p)/b" /v—a?éf‘,, f‘bf )
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The mean square of the output 1302(1 + 8%+ b3
from equation (15). This agrees with the idea of
equation (2). The correlation coefficient i

2+b) petween two adjacent samples and S|
(1+a>+b?)between first and third samples. (14a

Equation (14) gives the three-dimensional
output c.f. of a 2-memory-state filter. An ex-
pression for the (N + 1) - dimensional output c.f.
of a N-memory-state filter can be easily induced
from it. Let such a filter have an impulse res-
ponse whose impulses are 1, &, b,ec..m, n. The
desired c.f. has (2N + 1) factors, and is given
by equation (16).

The c.f. of equation (16) is easy to obtain
for a given filter, but it is not a convenient
thing to deal with when the filter has many
memory states and one requires the multidimension-
al distribution density. If one desires moments,
however, they are obtained from the c.f. by differ-
entiation; high-order moments come from high-order
partial derivatives and joint moments come from
cress partial derivatives, all evaluatéd at

‘é: .

4

(55,5,

:E/i)i[4i+f')§(bi+4fl+fa), .e.
. Eg(m i-i-,e §l+—o..+_§+,) E’-(”g‘f""g,*l_f:
. i)

BT peere, )

Fe (o .
e _i/_“'*m_”)&_(ng”)_

ve s .

(16)

The moments of the output signal depend only
on the moments of the input; an output moment of
a certain order depends only on the input moments
of that order and lower. This can be seen by
taking derivatives of equation (16).

Infinite~Order Outputs and Markov Processes

Suppose that the system shown in Figure 1 is
driven by a source of random first-order samples.
The output will be an infinite-order process
according to the conventions used above because
the impulse response has an infinite number of
samples. In principle, the output statistics
could be represented by equation (16). Actually
this is a special kind of infinite-order process,
generated by an impulse response which is a geo-
metric-series, and can be represented more simply
as a first-order Markov process.

The output of the filter of Figure 1 can be
thought of as a linear combination of an infinite
number of past inputs. The output can also be
expressed as the sum of the present input plus one
half of the previous input. In principle, an
infinite number of output ssmples in a row are
statistically related, but for this kind of situ-
ation, knowledge of the -statistical relation
between just two output samples in a row is suffi-
cient to establish that between any number in a
row. This follows because knowledge of the previ-
ous output completely summarizes past history in
its effect on the next output sample. If the in-
put ‘were a second-order process, knowledge of the
past two output samples would help in predicting
the next output sample, since it would then be
possible to compute the previous input sample and
this would help in predicting the next input
sample.

Let the input to a linear filter be first
order. If the linear filter has finite memory,
the joint relation between a number of consecutive
output samples one greater than the number of
memory states is necessary to completely describe
the output process. The joint relation between
more samples in a row can be derived, but will
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show that statistical dependence is only carried
over the above-mentioned number of samples. If
the linear filter has infinite memory (impulse
response is a geometric sequence), the joint rela-
tion between two adjacent output samples enables
one to derive the entire output process, which
will show that statistical connection will extend
(in principle) over an infinite number of output
samples. If the impulse response is the sum of
two exponentials, the output process is second-
order Markov, and the joint relation between three
consecutive samples is necessary to get a complete
description of the output process.

Getting a higher-dimensional distribution of
a Markov process is best done by leaving the c.f.
domain as in the equations (17). ) -

Ulﬁag.ﬂﬁ/ v,)= LLQ}J /bz)cU(qizgl ny)
(17)
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Return now to the block diagram of Figure 1.
Instead of fixing the gain in the feedback link
at 1/2, let it have the value "a". The impulse,,
rgsponse will have a sequence of values 1, a, a ,
Figure 7 shows the construction for the
r-l(f o, f_l) of the infinite-

8 gecee

calculation of Fr
order output.

It follows from Figure 7 that the c.f. of =
is equation (18). (19

R(S)=RF (ak, S+h f)F( %, frate §)...

Therefore, the desired two-dimensional output c.f.
1s (19).
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For example, let the input again E e first-
order Gaussian, with c.f.—-F-(fj ,Ci
From equation (19),

r (5, 5,)
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This gives the correct mean square of the output,
o= \, and a correlation coefficisnt between
1-a*/ two adjacent samples of "a".

Derivation of Output Characteristic Functions
for Higher-Order Inputs

So far only the response of linear sampled-
data systems to first-order inputs has been
considered. When the input signal is a higher-
order process, it can sometimes be recognized as

~ the result of a first-order process having been

linearly filtered.” Combine the cascaded filters
into a single filter which is driven by a first-
order input. When such a recognition cannot be
made, more involved techniques are required. The
form of these techniques will be indicated by the
derivation of the three dimensional c.f. of a one=-
memory-state filter driven by a second-order input.

The joint relation between three output samples
in a row will again be evaluated by forming their
linear combinations. The appropriate construction
is shown in Figure 8.

The input is second-order having a c.f. of
Py x (f ‘f 1)+ The problem is to form the

c.f. o} the smnlf whose ingredients are now
statistically related. Although only two inputs
in a row are related, it is convenient here to
represent the input process as fourth order having

the c.f. F fo, f—l ¥-2,%- 3

x ’x 1,1 ,x
This c.f. is the fofir-dfmensional transform of the
input distribution density (21).

Eboll_”/z;g"y:3(fol f——l‘ f?’ fa)
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The c.f. of the sum x, + x_; + X 5 + X 4 is
equation (22).
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The c.f. of the sum S'in Figure 8 is equation (23).

(5 (23
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The desired result is obtained from (23) in the
usual fashion as (24),

. EL,;A”N /V.g(j;i,,r fﬂ)

= E!;er’::, 2_4)&3[393(? fa:"-{r ),( a §—4+I:? ), (4-) :{ 57 -, (24 ) .

Equation. (24) gives some very simple results
when applied to the problem of the propagation of
second-order Gaussian statistics in the above
filter. Let the input have the c.f. of equation
(25). TIts mean square is o—°, ‘and the correlation
between adjacent input samples is o 15°

Teot,( g,f'),é;y‘@ L850 (a9

Equation (26) gives the degenerate fourth-order
c.f. of the second-order input process.

Elo’ £y Xl:' ’(-13 (fo,i: ’ fe?' fa)
f v 5.5+ f_lz* f 21+ 533"2 YA f_#g 5 2+—fl 53)]
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=

As dictated by equation (24), the desired three-
dimensional output c¢.f. (equation (28)) is obtain-
ed making the substitutions (27) to the right-
hand side of (26).

§ s,
£ rt]]
gk"“’[éir+i;£]
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The megn squage of the third-order output signal
is (o< + ac=" + 2ao- 2). The gorrelation between
adjacent samples is (iﬂ+ ¢ +7a”) and the corre-
lation between every other sample isc;a .

In this paper, several kinds of random input

‘signals were applied to varfous kinds of linear-

sampled data filters. The means of getting
complete statistical descriptions of the output
signals were given. Except for certain kinds of
input statistics, asmong them the Gaussian, the
general explicit forms turn out to be rather un-
wieldy to apply although they are very easy to
obtain. -

. The relationship between input statistics
and output statistics has not turned out to be in
the nature of a linear "transform function." The
advantages of a transfer function are obtained
however, since the output c.f. can always be
written down directly when the input c.f. is given.
The characteristics of the linear filter were
completely determined by the joint input-output
c.f., for an arbitrary input c.f. This joint c.f.
has not been derived, but is derivable by the
techniques of this paper.

The results of this paper make available to
the engineer a lot more statistical information
than he has been accustomed to using in system
design and analysis, ie, more than mean square and
autocorrelation function. It is hoped that he
will learn to use these things to get more value
from statistical system analysis.
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———C Z 7-7 koxo + (ako +k_1) x-l + ak_l 2

: Figure 5. Construction for the Calculation ofFro__r l(f;’ f_l)
L

7

ko

= xoko+ x_l(ako+k_l)
2
+x_2(a ko+ak_1)+ ,
+ x_9(bko+ ak_1+ k_2)
+ x_3(bk_1+ ak_2)+ x_“(bk_z). Figure 7. Construction for the
Calculation of

x"h FI' r 1(f0, f‘l)

Oy

X _g Figure 6. Construction for the Calculation

of F
T, T Tl fo,f-l, LY

- xo(k°)+ x_l(ako+ k_1)+x_2(ak_1+k_2)
+ x_B(ak_z)

F . Figure 8, Construction for Calculation of Input c¢.f. when
XgoX 30X 0% 3(¥, 1 £213)
° 27 TLemEy Output is a Second-Order Process.
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