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Perceptrons, Adalines, and Backpropagation

Bernard Widrow and Michael A. Lehr

Introduction

The field of neural networks has enjoyed major advances since

1960, a year which saw the introduction of two of the earliest .

feedforward neural network algorithms: the perceptron rule
(Rosenblatt, 1962) and the LMS algorithm (Widrow and Hoff,
1960). Around 1961, Widrow and his students devised Mada-
line Rule I (MRI), the earliest learning rule for feedforward
networks with multiple adaptive elements. The major extension
of the feedforward neural network beyond Madaline T took
place in 1971 when Paul Werbos developed a backpropagation
algorithm for training multilayer neural networks. He first
published his findings in 1974 in his doctoral dissertation
(see BACKPROPAGATION: Basics AND NEW DEVELOPMENTS).
Werbos’s work remained almost unknown in the scientific
community until 1986, when Rumelhart, Hinton, and Williams
(1986) rediscovered the technique and, within a clear frame-
work, succeeded in making the method widely known.

The development of backpropagation has made it possible to
attack problems requiring neural networks with high degrees of
nonlinearity and precision (Widrow and Lehr, 1990; Widrow,
Rumelhart, and Lehr, 1994). Backpropagation networks with
fewer than 150 neural elements have been successfully applied
to vehicular control simulations, speech generation, and under-
sea mine detection. Small networks have also been used suc-
cessfully in airport explosive detection, expert systems, and
scores of other applications. Furthermore, efforts to develop
parallel neural network hardware are advancing rapidly, and
these systems are now becoming available for attacking more
difficult problems such as continuous speech recognition.

The networks used to solve the above applications varied
widely in size and topology. A basic component of nearly all
neural networks, however, is the adaptive linear combiner.

The Adaptive Linear Combiner

The adaptive linear combiner has as output a linear combina-
tion of its inputs. In a digital implementation, this element
receives at time k an input signal vector or input pattern vector
X =[x, X1,, X5,5 - -, X, ]", and a desired response d, a special
input used to effect learning. The components of the input vec-
tor are weighted by a set of coefficients, the weight vector W, =
[Wo,> Wi,s Wa,s - - - » Wa, |7 The sum of the weighted inputs is then
computed, producing a linear output, the inner product s, =
XTW,. The components of X, may be either continuous analog
values or binary values. The weights are essentially continu-
ously variable and can take on negative as well as positive
values.

During the training process, input patterns and correspond-
ing desired responses are presented to the linear combiner. An
adaptation algorithm automatically adjusts the weights so the
output responses to the input patterns will be as close as possi-
ble to their respective desired responses. In signal processing
applications, the most popular method for adapting the weights
is the simple LMS (least mean square) algorithm (Widrow and
Hoff, 1960), often called the Widrow-Hoff Delta Rule (Ru-
melhart, Hinton, and Williams, 1986). This -algorithm mini-
mizes the sum of squares of the linear errors over the training
set. The linear error ¢, is defined to be the difference between
the desired response d; and the linear output s, during presen-
tation k. Having this error signal is necessary for adapting the

weights. Both the LMS rule and Rosenblatt’s perceptron rule
will be detailed in later sections.

An important element used in many neural networks is the-
“ADAptive LInear NEuron,” or adaline (Widrow and Hoff,
1960). In the neural network literature, such elements are often
referred to as adaptive neurons. The adaline is an adaptive
threshold logic element. It consists of an adaptive linear com-
biner cascaded with a hard-limiting quantizer which is used to
produce a binary +1 output, y, = sgn(s,). A bias weight, or
threshold, w,, , which is connected to a constant input, xo =
+1, effectively controls the threshold level of the quantizer.
Such an element may be seen as a McCulloch-Pitts neuron
augmented with a-learning rule for adjusting its weights.

In single-element neural networks, the weights are often
trained to classify binary patterns using binary desired re-
sponses. Once training is complete, the responses of the trained
element can be tested by applying various input patterns. If
the adaline responds correctly with high probability to input
patterns that were not included in the training set, it is said
that generalization has taken place. Learning and generaliza-
tion are among the most useful attributes of adalines and
neural networks.

With » binary inputs and one binary output, a single adaline
is capable of implementing certain logic functions. There are 2"
possible input patterns. A general logic implementation would
be capable of classifying each pattern as either +1 or —1, in
accordance with the desired response. Thus, there are 22" possi-
ble logic functions connecting # inputs to a single binary out-
put. A single adaline is capable of realizing only a small subset
of these functions, known as the linearly separable logic func-
tions or threshold logic functions. These are the set of logic
functions that can be obtained with all possible weight varia-
tions. With two inputs, a single adaline can realize 14 of the 16
possible binary logic functions. The two it cannot learn are
exclusive OR and exclusive NOR functions. With many inputs,
however, only a small fraction of all possible logic functions
are realizable, i.e., linearly separable. Combinations of ele-
ments or networks of elements can be used to realize functions
which are not linearly separable.

Nonlinear Ngural Networks

One of the earliest trainable layered neural networks with mul-
tiple adaptive elements was the Madaline I structure of Widrow
and Hoff. In the early 1960s, a 1000-weight Madaline I was
built out of hardware and used in pattern recognition research
(Widrow and Lehr, 1990). The weights in this machine were
memistors, electrically variable resistors developed by Widrow
and Hoff which are adjusted by electroplating a resistive link in
a sealed cell containing copper sulfate and sulfuric acid.

Madaline I was configured in the following way. Retinal in-
puts were connected to a layer of adaptive adaline elements, the
outputs of which were connected to a fixed logic device that
generated the system output. Methods for adapting such sys-
tems were developed at that time. An example of this kind of
network is shown in Figure 1. Two adalines are connected to
an AND logic device to provide an output. With weights suit-
ably chosen, the separating boundary in pattern space for the
system can implement any of the 16 two-input binary logic
functions, including the exclusive OR and exclusive NOR
functions.




720 Part ITL: Articles
Figure 1. A two-adaline form of
madaline.
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Madalines were constructed with many more inputs, with
many more adaline elements in the first layer, and with various
fixed logic devices such as AND, OR, and majority vote-taker
elements in the second layer. Those three functions are all
threshold logic functions.

Multilayer Networks

The madaline networks of the 1960s had an adaptive first layer
and a fixed threshold function in the second (output) layer
(Widrow and Lehr, 1990). The feedforward neural networks of
today often have many layers, all of which are usually adap-
tive. The backpropagation networks of Rumelhart et al. (1986)
are perhaps the best-known examples of multilayer networks.
A three-layer feedforward adaptive network is illustrated in
Figure 2. It is “fully connected” in the sense that each adaline
receives inputs from every output in the preceding layer.
During training, the responses of the output elements in
the network are compared with a corresponding set of desired
responses. Error signals associated with the elements of the
output layer are thus readily computed, so adaptation of the
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Figure 2. A three-layer adaptive neural
network.

output layer is straightforward. The fundamental difficulty as-
sociated with adapting a layered network lies in obtaining error
signals for hidden layer adalines, that is, for adalines in layers
other than the output layer. The backpropagation algorithm
provides a method for establishing these error signals.

Learning Algorithms

The iterative algorithms described here are all designed in
accord with the Principle of Minimal Disturbance: Adapt to re-
duce the output error for the current training pattern, with mini-
mal disturbance to responses already learned. Unless this princi-
ple is practiced, it is difficult to simultaneously store the re-
quired pattern responses. The minimal disturbance principle is
intuitive. It was the motivating idea that led to the discovery of
the LMS algorithm and the madaline rules. In fact, the LMS
algorithm had existed for several months as an error reduction
rule before it was discovered that the algorithm uses an instan-
taneous gradient to follow the path of steepest descent and
minimizes the mean square error of the training set. It was then
given the name LMS (least mean square) algorithm.
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The LMS Algorithm

The objective of adaptation for a feedforward neural network
is usually to reduce the error between the desired response and
the network’s actual response. The most common error func-
tion is the mean square error (MSE), averaged over the training
set. The most popular approaches to mean-square-error reduc-
tion in both single-element and multielement networks are
based on the method of gradient descent.

Adaptation of a network by gradient descent starts with an
arbitrary initial value W, for the system’s weight vector. The
gradient of the mean-square-error function is measured and the
weight vector is altered in the direction opposite to the mea-
sured gradient. This procedure is repeated, causing the MSE to
be successively reduced on average and causing the weight vec-
tor to approach a locally optimal value.

The method of gradient descent can be described by the
relation

Wi = Wy + u(—=V,) )

where p is a parameter that controls stability and rate of con-
vergence and V, is the value of the gradient at a point on the
MSE surface corresponding to W = W,.

The LMS algorithm works by performing approximate

steepest descent on the mean-square-error- surface in weight

space. This surface is a quadratic function of the weights and is
therefore convex and has a unique (global) minimum. An in-
stantaneous gradient based on the square of the instantaneous
error is :

de?
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LMS works by using this crude gradient estimate in place of
the true gradient V,. Making this replacement into Equation 1
yields : .
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Figure 3. Rosenblatt’s a-perceptron. Connections
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The instantaneous gradient is used because (a) it is an unbiased
estimate of the true gradient (Widrow and Stearns, 1985), and
(b) it is easily computed from single data samples. The true
gradient is generally difficult to obtain. Computing it would
involve averaging the instantaneous gradients associated with
all patterns in the training set. This is usually impractical and
almost always inefficient. )
The present error or linear error g, is defined to be the differ-
ence between the desired response dj and the linear output s, =
WIX, before adaptation:

& & d— Wi'X, @

Performing the differentiation in Equation 3 and replacing the
linear error by the definition in Equation 4 gives

0(de — Wi'Xy)

Wiig = W — 2p8, W, )
Noting that d, and X, are independent of W, yields
Weir = Wi + 25X, . (6)

This is the LMS algorithm. The learning constant u determines
stability and convergence rate (Widrow and Stearns, 1985).

The Perceptron Learning Rule

The Rosenblatt a-perceptron (Rosenblatt, 1962), diagrammed
in Figure 3, processed input patterns with a first layer of sparse,
randomly connected, fixed-logic devices. The outputs of the
fixed first layer fed a second layer which consisted of a single
adaptive linear threshold element. Other than the convention
that its input signals and its output signal were {1,0} binary,
and that no bias weight was included, this element was equi-
valent to the adaline element. The learning rule for the a-
perceptron was very similar to LMS, but its behavior was in
fact quite different.

Adapting with the perceptron rule makes use of the quantizer
error &, defined to be the difference between the desired re-
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sponse and the output of the quantizer
gk Ld —n @)

The perceptron rule, sometimes called the perceptron conver-
gence procedure, does not adapt the weights if the output deci-
sion y; is correct, i.e., if & = 0. If the output decision disagrees
with the binary desired response d,, however, adaptation is
effected by adding the input vector to the weight vector when
the error & is positive, or subtracting the input vector from
the weight vector when the error §, is negative. Note that the
quantizer error & is always equal to either +1, —1, or 0. Thus,
the product of the input vector and the quantizer error &, is
added to the weight vector. The perceptron rule is identical to
the LMS algorithm, except that with the perceptron rule, one-
half of the quantizer error, £/4, is used in place of the linear
error g, of the LMS rule. The perceptron rule is nonlinear, in
contrast to the LMS rule, which is linear. Nonetheless, it can be
written in a form which is very similar to the LMS rule of
Equation 6:

&
Wiy = W, + 2u5*xk ®)

Rosenblatt normally set u to one. In contrast to LMS, the
choice of p does not affect the stability of the perceptron algo-
rithm, and it affects convergence time only if the initial weight
vector is non-zero. Also, while LMS can be used with either
analog or binary desired responses, Rosenblatt’s rule can be
used only with binary desired responses.

The perceptron rule stops adapting when the training pat-
terns are correctly separated. There is no restraining force con-
trolling the magnitude of the weights, however. The direction
of the weight vector, not its magnitude, determines the decision
function. The perceptron rule has been proven capable of sepa-
rating any linearly separable set of training patterns (Rosen-
blatt, 1962; Nilsson, 1965). If the training patterns are not lin-
early separable, the perceptron algorithm goes on forever, and
in most cases the weight vector gravitates toward zero. As a
result, on problems which are not linearly separable, the per-
ceptron often does not yield a low-error solution, even if one
exists.

This behavior is very different from that of the LMS algo-
rithm. Continued use of LMS does not lead to an unreasonable
weight solution if the pattern set is not linearly separable. Nor,
however, is this algorithm guaranteed to separate any linearly
separable pattern set. LMS typically comes close to achieving
such separation, but its objective is different, i.e., error reduc-
tion at the linear output of the adaptive element.

“Backpropagation” for the Sigmoid Adaline

A sigmoid adaline element incorporates a sigmoidal nonlin-
earity. The input-output relation of the sigmoid can be denoted
by » = sgm(s;). A typical sigmoid function is the hyperbolic
tangent

. 1— =255
% = tanh(s,) =(—e) ©)

14 e72%

We shall adapt this adaline with the objective of minimizing

the mean square of the sigmoid error §,, defined as
& 2 d, — y. = d, — sgm(s;) (10)

The method of gradient descent is used to adapt the weight
vector. By following the same line of reasoning used to develop
LMS, the instantaneous gradient estimate obtained during pre-
sentation of the kth input vector X, can be found to be

(&) . 0§ . s
V.= a_vt'k = 28,‘565; = — 2§, sgm’(5,) X an
Using this gradient estimate with- the method of gradient de-
scent provides a means for minimizing the mean square error
even after the summed signal s, goes through the nonlinear
sigmoid. The algorithm is

Wiir = W, + u(= V) = W, + 2u6,X, 12)

where §, denotes &, sgm’(s,). The algorithm of Equation 12 is
the backpropagation algorithm for the single adaline element,
though the backpropagation name only makes sense when the
algorithm is utilized in a layered network, which will be studied
later.

If the sigmoid is chosen to be the hyperbolic tangent function
(Equation 9), then the derivative sgm’(s, ) is given by

e (s,) — a(tagz )
=1 (tanh(s))* = 1 — )¢ 13)
Accordingly, Equation 12 becomes
Wirr = Wi + 2051 — 30X, 14)

The single sigmoid adaline trained by backpropagation
shares some advantages with both the adaline trained by LMS
and the perceptron trained by Rosenblatt’s perceptron rule. If
a pattern set is linearly separable, the objective function of
the sigmoid adaline, the mean square error, is minimized only
when the pattern set is separated. This is because, as the
weights of the sigmoid adaline grow large, its response approxi-
mates that of a perceptron with weights in the same direction.
The sigmoid adaline trained by backpropagation however, also
shares the advantage of the adaline trained by LMS: it tends to
give reasonable results even if the training set is not separable.

Backpropagation training of the sigmoid adaline does have
one drawback, however. Unlike the linear error of the adaline,
the output error of the sigmoid adaline is a nonlinear function
of the weights. As a result, its mean square error surface is
not quadratic, and may have local minima in addition to the
optimal solution. Thus, unlike the perceptron rule, it cannot
be guaranteed that backpropagation training of the sigmoid
adaline will successfully separate a linearly separable training
set. Nonetheless, the single sigmoid adaline performs admira-
bly in many filtering and pattern classification applications. Its
most important role, however, occurs in multilayer networks,
to which we now turn.

Backpropagation for Networks

The backpropagation technique is a substantial generalization
of the single sigmoid adaline case discussed in the previous
section. When applied to multilayer feedforward networks, the
backpropagation technique adjusts the weights in the direction
opposite to the instantaneous gradient of the sum square error
in weight space. Derivations of the algorithm are widely avail-
able in the literature (Rumelhart, Hinton, and Williams, 1986;
Widrow and Lehr, 1990). Here we provide only a brief sum-
mary of the result.

The instantaneous sum square error & is the sum of the
squares of the errors at each of the N, outputs of the network.
Thus

N, »
g = Zl &% 15

In its simplest form, backpropagation training begins by pre-
senting an input pattern vector X to the network, sweeping



Perceptrons, Adalines, and Backpropagation® 723

forward through the system to generate an output response
vector Y, and computing the errors at each output. We con-
tinue by sweeping the effects of the errors backward through
the network to associate a square error derivative § with each
adaline, computing a gradient from each J, and finally up-
dating the weights of each adaline based on the corresponding
gradient. A new pattern is then presented and the process is
repeated. The initial weight values are normally set to small
random values. The algorithm will not work properly with
multilayer networks if the initial weights are either zero or
poorly chosen non-zero values. :

The §’s in the output layer are computed.just as they are for
the sigmoid adaline element. For a given output adaline,

8 = &sgm/’(s) (16)

where £ is the error at the output of the adaline and s is the
summing junction output of the same unit.

time-lapse

Figure 4. Example of a truck backup
sequence. final state

Hidden layer calculations, however, are more complicated.

The procedure for finding the value of 5, the value of § asso-

ciated with a given adaline in hidden layer /, involves respec-
tively multiplying each derivative 6™ associated with each
element in the layer immediately downstream from the given
adaline by the weight connecting it to the given adaline. These
weighted square error derivatives are then added together,
producing an error term &, which in turn is multiplied by
sgm’(s?), the derivative of the given adaline’s sigmoid function
at its current operating point. Thus, the § corresponding to
adaline j in hidden layer / is given by

00 =sgm'(s") Y SOy 17)
ieNUHD

where NU*1 is a set containing the indices of all adalines in
layer / + 1.and wi*™" is the weight connecting adaline i in layer
[ + 1 to the output of adaline j in layer /.

initial state
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Updating the weights of the adaline element using the method
of gradient descent with the instantaneous gradient is a process
represented by

Wiy = W + u(— %) = W, + 2u5, X, (18)

where W is the adaline’s weight vector and X is the vector of

inputs to the adaline. Thus, after backpropagating all square
error derivatives, we complete a backpropagation iteration by
adding to each weight vector the corresponding input vector
scaled by the associated square error derivative. Equations 16,
17, and 18 comprise the general weight update rule of the back-
propagation algorithm for layered neural networks.

Many useful techniques based on the backpropagation algo-
rithm have been developed. One popular method, called back-
propagation through time, allows dynamical recurrent networks
. to be trained. Essentially, this is accomplished by running the
recurrent neural network for several time steps and then “un-
rolling” the network in time. This results in a virtual network
with a number of layers equal to the product of the original
number of layers and the number of time steps. The ordinary
backpropagation algorithm is then applied to this virtual net-
work and the result is used to update the weights of the original
network. This approach was used by Nguyen and Widrow
(1989) to enable a neural network to learn without a teacher
how to back up a computer-simulated trailer truck to a loading
dock (Figure 4). This is a complicated and highly nonlinear
steering task. Nevertheless, with just six inputs providing infor-
mation about the current position of the truck, a two-layer
neural network with only 26 sigmoid adalines was able to learn
of its own accord to solve this problem. Once trained, the
network could successfully back up the truck from any initial
position and orientation in front of the loading dock.

Discussion

Although this article has focused on pattern classification is-
sues, nonlinear neural networks are equally useful for such
tasks as interpolation, system modeling, state estimation, adap-
tive filtering, and nonlinear control. Unlike their linear coun-
terparts which have a long track record of success, nonlinear
neural networks have only recently begun proving themselves
in commercial applications. The capabilities of multielement
neural networks have improved markedly since the introduc-
tion of Madaline Rule I. This has resulted largely from de-
velopment of the backpropagation algorithm, easily the most
useful and popular neural network training algorithm currently
available. As we have seen, backpropagation is a generalization
of LMS which allows complex networks of sigmoid adalines to
be efficiently adapted. Backpropagation and related algorithms
are in a large part responsible for the dramatic growth the field
of neural networks is currently experiencing.

The timing of the current boom in the field of neural net-
works is also due to the rapid advance of computer and micro-
processor performance which continues to improve the feasi-
bility and cost-effectiveness of computationally expensive
techniques in relation to classical approaches of engineering
and statistics. Although single-element linear adaptive filters are
still used more extensively than nonlinear multielement neural
networks, the latter are potentially applicable to a much wider
range of problems. Furthermore, the applications for which
multielement neural networks are best suited often involve
complicated nonlinear relationships for which classical solu-
tions are either ineffective or unavailable. The continued ad-
vancement of neural network algorithms and techniques, in
conjunction with improvements in the special and general pur-
pose computer hardware used to implement them, sets the -
stage for a future in which neural networks will play an in-
creasing role in commercial and industrial applications.
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