3.15 THE CAPACITY OF THE RELAY CHANNEL

Consider the following seemingly simple discrete memoryless relay channel:

\[X \xrightarrow{C_0} Y_1 \xrightarrow{} Y_2 \]

Here \(Y_1, Y_2 \) are conditionally independent and conditionally identically distributed given \(X \), that is, \(p(y_1, y_2 \mid x) = p(y_1 \mid x) \cdot p(y_2 \mid x) \). Also, the channel from \(Y_1 \) to \(Y_2 \) does not interfere with \(Y_2 \). A \((2^nR, n)\) code for this channel is a map \(x : 2^nR \rightarrow X^n \), a relay function \(r : Y_1^n \rightarrow 2^{nC_0} \), and a decoding function \(g : 2^{nC_0} \times Y_2^n \rightarrow 2^nR \). The probability of error is given by

\[P^{(n)}_e = P\{ g(r(y_1), y_2) \neq W \}, \]

where \(W \) is uniformly distributed over \(2^nR \) and

\[p(w, y_1, y_2) = 2^{-nR} \prod_{i=1}^{n} p(y_{1i} \mid x_i(w)) \prod_{i=1}^{n} p(y_{2i} \mid x_i(w)). \]

Let \(C(C_0) \) be the supremum of the achievable rates \(R \) for a given \(C_0 \), that is, the supremum of the rates \(R \) for which \(P^{(n)}_e \) can be made to tend to zero.

We note the following facts:
1. \[C(0) = \sup_{p(x)} I(X; Y_2). \]
2. \[C(\infty) = \sup_{p(x)} I(X; Y_1, Y_2). \]
3. \(C(C_0) \) is a nondecreasing function of \(C_0 \).

What is the critical value of \(C_0 \) such that \(C(C_0) \) first equals \(C(\infty) \)?

REFERENCES