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On the Statistical Efficiency o f the LMS 
Algorithm with  Nonstationary Inputs 

BERNARD W IDROW, FELLOW, IEEE, AND EUGENE WALACH 

Abstract-A fundamental relationship exists between the quality of an 
adaptive solution and the amount of data used in obtaining it. Quality is 
defined here in terms of “misadjustment,” the ratio of the excess mean 
square error (mse) in an adaptive solution to the min imum possible mse. 
The higher the misadjustment, the lower the quality is. The quality of the 
exact least squares solution is compared with the quality of the solutions 
obtained by the orthogonalized and the conventional least mean square 
(LMS) algorithms with stationary and nonstationary input data. When 
adapting with noisy observations, a filter trained with a finite data sample 
using an exact least squares algorithms will have a misadjustment given by 

ME?, number  of weights 
N number  of training samples 

If the same adaptive filter were trained with a steady flow of data using an 
ideal “orthogonalized LMS” algorithm, the misadjustment would be 

M=!L= number  of weights 
4 Tmse number  of training samples 

Thus, for a given time constant rmse of the learning process, the ideal 
orthogonalized LMS algorithm will have about as low a misadjustment as 
can be achieved, since this algorithm performs essentially as an exact least 
squares algorithm with exponential data weighting. It is well known that 
when rapid convergence with stationary data is required, exact least 
squares algorithms can in certain cases outperform the conventional 
Widrow-Hoff LMS algorithm. It is shown here, however, that for an 
important class of nonstationary problems, the misadjustment of conven- 
tional LMS is the same as that of orthogonalized LMS, which in the 
stationary case is shown to perform essentially as an exact least squares 
algorithm. 

I. INTRODUCTION 

T HE BASIC component  of most adaptive filtering and  
signal processing systems is the adaptive linear com- 

biner [l]-[4] shown in F ig. 1. An output signal is formed 
which is the weighted sum of a  set of input signals. The  
output would be  a  simple linear combination of the inputs 
only if the weights were fixed. In actual practice, the 
weights are adjusted or adapted purposefully; the resulting 
weight values are signal dependent.  This process causes the 
system behavior during adaptation to differ significantly 
from that of a  linear system. However, when the adaptive 
process converges and  the weights settle to essentially fixed 
values with only m inor random fluctuations about the 
equilibrium solution, the converged system exhibits essen- 
tially linear behavior. 
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Fig. 1. Adaptive linear combiner and  its application in an  adapt ive 
filter. 

Adaptive linear combiners have been  successfully used 
in the mode ling of unknown systems [2], linear prediction 
[2], [5], adaptive noise cancell ing [4], adaptive antenna 
systems [3], channel  equalization systems for h igh-speed 
digital communicat ions [6]-[9], echo cancellation [lo]-[12], 
systems for instantaneous frequency estimation [13], re- 
ceivers of narrow-band signals buried in noise (the “adap-  
tive line enhancer”) [4], [14], [15], adaptive control systems 
[16]-[18], and  in many other applications. 

In F ig. l(a), the interpretation of the input signal vector 
xj = (xIj>’ ",X,j>T? 

and the desired response dj m ight 
vary depending on  how the adaptive linear combiner is 
used. In F ig. l(b), an  application to adaptive filtering is 
shown. In turn, an  application of adaptive filtering to plant 
mode ling or system identification is shown in F ig. 2. Here, 
we can view the desired response dj as a  linear combination 
of the last n  samples of the input signal vector, corrupted 
by a  certain independent zero-mean plant noise nj. Our 
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Fig. 2. Adaptive plant identification 

aim in this application is to estimate an unknown plant 
(represented by its transfer function P(z) = w: + * * * + 
w*zen+i) through the m inimization of the output error cj 
in” the mean-square sense. For purposes of analysis, we 
consider the plant to be a transversal finite impulse re- 
sponse (FIR) filter. Referring to Figs. l(a) and (b), the 
input signal vector at thejth sampling instant is designated 
by 

X j  = (Xj,. ’ ‘,Xj-~+l)T, (1) 
and the set of the weights of adaptive transversal filter is 
designated by 

w= (WI,‘. *,wJT. (2) 
The jth output signal is 

y,=c wlxj-i+l = WTXj = xj’w. (3) 
i=l 

The input signals and desired response are assumed to be 
stationary ergodic processes. Denoting the desired response 
as dj, the error at the jth time is 

cj = dj - yj = dj - W  ‘Xj = dj - X,? W. (4 

The square of this error is 

cf = d,? - 2djXjTW + WTXjxjTW. (5) 

The mean-square error (mse) 5, the expected value of ej, is 

= E[d;] - 2E[djX;] W+ WTE[XjX;] W  

= E[d;] - 2PTW+ WTRW, (6) 
where the cross-correlation vector between the input sig- 
nals and the desired response is defined as 

djxl 

E[djXj] = E 

! I 

; A P, (7) 
djXj-n+l 

and the input autocorrelation matrix R is defined as 
r xjxj ’ ” xjxj-“I1 1 

A R. 

(8) 

It can be observed from (6) that with stationary ergodic 
inputs the mean square error performance function is a 
quadratic function of the weights, a paraboloidal “bowl” 
that has a unique m inimal point for 

WC W* = R-lp. (9) 
In practice, of course, we do not know the exact statistics R 
and P. One way of finding an estimate of the optimal 
weight vector W* would be to estimate R and P for the 
given input and given desired response. This approach 
would lead to what is called an exact least mean square 
solution. This approach is optimal in a sense that the sum 
of square errors will be m inimal for the given data sample. 
However, such solutions are generally somewhat complex 
from the computational point of view [19]-[21]. On the 
other hand one can use one of the simpler gradient search 
algorithms such as the least mean square (LMS) steepest 
descent algorithm of Widrow and Hoff. However, this 
algorithm is sometimes associated with a certain deteriora- 
tion in performance with problems for which there exists 
great spread between the eigenvalues of the autocorrelation 
matrix R (see, for instance, [20]-[21]). 

In order to establish a bridge between the LMS and the 
exact least squares approaches mentioned above, we will 
introduce an idealized orthogonalized LMS algorithm. For 
the implementation of this algorithm, we will have to 
assume perfect knowledge of the autocorrelation matrix R. 
Naturally that means that this idealized algorithm cannot 
be used in practice. However, its performance provides a 
convenient theoretical benchmark for the sake of compari- 
son.’ 

In the next section we will analyze briefly the perfor- 
mance of the exact least squares solution when the weights 
are obtained with a finite data sample. Then in Sections III 
and IV we will analyze the idealized LMS algorithm and 
show, at least heurstically, that its performance is equiva- 
lent to that of an exact least squares algorithm. Based on 
this heuristic argument, we will view the idealized ortho- 
gonalized LMS process as an “optimal” gradient search 
algorithm. 

In Section V we will define a class of nonstationary 
problems: problems in which an unknown plant P(z) 
varies in a certain random way. Once again, the adaptive 
filter performs a modeling task. For this class of frequently 
encountered problems, we will analyze and compare the 
performances of the orthogonal LMS and the conventional 
steepest descent LMS algorithms. We will show that both 
perform equivalently (in the mean) for this class of nonsta- 
tionary problems. 

II. MISADJUSTMENT OF FINITE - DATA EXACT 
LEAST - SQUARES PROCESSES 

Suppose that the adaptive linear combiner in Fig. 2 is 
fed N independent zero-mean n x 1 data vectors 

‘It should be noted that there are numerous algorithms in the literature 
which recursively estimate the autocorrelation matrix R and use this 
estimation for the purpose of orthogonalization of the input data (see, for 
instance, [28]-[32]). These algorithms asymptotically converge to the 
idealized algorithm discussed here. 



WIDROW AND WALACH: STATISTICAL EFFICIENCY OF LMS ALGORITHM 213  

Fig. 3. Small and  large sample-size mean  square error curves. 

Xl, x2,- . . ,X,,, and  their respective scalar desired responses 
4, 4,. . .> d,, all drawn from a  stationary ergodic process. 
Keeping the weights fixed, a  set of N error equations can 
be  written as 

ci = di - XITW, i = 1,2;..,N. (10) 
The  objective is to find a  weight vector that m inimizes the 
sum of the squares of the error values based on  the finite 
sample of N items of data. 

Eq. (10) can be  written in matrix form as 
c=D-xW, 

where X is an  N X n rectangular matrix 

+ [x1,x 2, *-,XNIT, 

where e  is an  N element error vector 

(11) 

(12) 

T  c A [~1,~2,.-,~~1 > (13) 
and  where D is an  N element vector of desired responses 

D A [d,, d,; . .,d,lT. (14) 

A unique solution of (ll), a  weight vector W  that would 
bring z to zero, would exist only if X is square and  
nonsingular. However, the case of greatest interest is that 
of N B n. As such, (11) would typically be  overcon- 
strained and  one  would generally seek a  best least squares 
solution. The  sum of the squares of the errors is 

rTr = DTD + W ’x’xW - 2DTxW. (15) 
This sum mu ltiplied by l/N is an  estimate $  of the mse E. 
Thus 

and  
lim  [=t. (16) 

N-‘X 

Note that ,$ is a  quadratic function of the weights, the 
parameters of the quadratic form being related to proper- 
ties of the N data samples. (xTX) is square and  is assumed 
to be  positive definite. [ is a  small sample-size mse func- 
tion, while < is the large sample-size “true” mse function. 
F ig. 3  shows a  comparative sketch of these functions. 
Many small sample-size curves are possible, but there is 

only one  large sample-size curve. The  large sample-size 
curve is the average of the many small sample-size curves. 

The  m inimum of the small sample-size function can be  
found by differentiating (15), and  the result is 

W ,, = (xTx)-lxTD. (17) 
This is the exact least squares solution for the given data 
sample. The  W iener solution W* is the expected value of 
WW2 

Each of the small sample-size curves of F ig. 3  is an  
ensemble member.  Let the ensemble be  constructed in the 
following manner.  Assume that the vectors Xi, X,, . . .,X, 
are the same for all ensemble members,  but that the 
associated desired responses d,, d,, . . . ,d, differ from one  
ensemble member  to another because of the stochastic 
character of plant noise (refer to F ig. 2). Over this ensem- 
ble therefore, the X matrix is constant while the desired 
response vector D is stochastic. In order to evaluate the 
excess mean  square error due  to adaptation with the finite 
amount  of data available, we have to find 

E excess = $[ vTxTxv], (18) 

where 
v& w,,- w*. (19) 

Expectation is taken over the above-descr ibed ensemble. 
Eq. (18) can be  written as 

5  exceSS =$tr(E[VTxTxV])=jjE[tr(VTxTxV)] 

= $E[tr(VVTxTx)] = $ tr(E[VVT] .x’x). 

(20) 

The  covariance matrix of the weight error vector V is 
known to be  (see, for instance, [22])3 

-wvT) = [x’x] -l . &in, P-1) 
where Etin is the m inimum mean  square error, the m ini- 
mum of the true mse function. 

Substitution of (21) into (20) yields 

E exceSS = ;. .$,,. (24 

It is important to note that this formula does not depend  
on  X. The  above described ensemble can be  general ized to 
an  ensemble of ensembles, each having its own X, without 
changing formula (22). Hence this formula is valid for a  
very wide class of inputs. 

It is useful to consider a  dimensionless ratio between the 
excess mean  square error and  the m inimum mean  square 
error. This ratio is called in the literature (see, for instance, 
[l], [2], [4]) the m isadjustment M . For the exact least square 

*Note that validity of this statement is cont ingent on  our  earlier 
assumption that the plant P(z) is FIR and  both plant and  plant model  
have  the same order n. 

3For  the sake of simplicity we assumed here that the plant noise n, in 
Fig, 2  is white and  that the adapt ive filter has  enough  weights to match 
the unknown plant. 
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solution we can find the n&adjustment (due to the finite 
length of input data) from (22) as 

(number of weights) 
M  = x = (number of independent training samples) f 

(23) 
This m isadjustment formula was first presented without 

detailed proof by Widrow and Hoff [l] in 1960, and has 
been used for many years in pattern recognition studies. 
For small values of M  (less than 25 percent), it has proven 
an excellent approximation. A formula similar to (23) 
based on somewhat different assumptions, was derived by 
Davisson [23] in 1970. 

III. STOCHASTIC GRADIENT SEARCH BY STEEPEST 
DESCENT 

Gradient methods are commonly used to adjust adaptive 
parameters in order to search the quadratic mean square 
error performance function for its m inimum. Most widely 
used is the method of steepest descent. With this method, a 
sequence of changes is made in the weight vector along the 
direction of the negative gradient. Thus the next weight 
vector I#$+ i is made equal to the present weight vector y. 
plus a change proportional to the negative gradient at the 
j th iteration: 

y+1 = I+$ + #ll( - 0,). (24) 
The parameter p controls stability and rate of convergence. 
An “instantaneous gradient” 0, an estimate of the true 
gradient vj, can be found by differentiation of (5) with 
respects to W: 

oj = -2ejx,. (25) 
Using the instantaneous gradient in place of the true 
gradient in (24) yields the LMS algorithm of Widrow and 
Hoff, 

wj+l = wj + 2pLEjxj. (26) 

The behavior of algorithm (26) has been analyzed exten- 
sively in the literature (see, for instance, [2], [3], [4], [18], 
[24], [25]). It was proved in [2], [4] that if the adaptation 
constant p was chosen such that 

O<p<L 
tr(R) ’ (27) 

then the adaptive weights will relax from their initial 
condition to the Wiener solution4 W*. That means that the 
weight error vector 

y=wJ-W* (28) 

will converge to zero in the mean. The relaxation process 
will be governed by the relation 

E[F$+,] = (I- 2pR)E[V,]. (29) 

41n [2]-[4] it was proved that (27) is sufficient for the convergence in 
the mean. However it can be shown that this condition is both sufficient 
and necessary for the convergence of the variance. See also [33]-[35]. 

Therefore, there will be n different modes of convergence 
corresponding to n eigenvalues of the autocorrelation ma- 
trix R. Using normal decomposition of the matrix R: 

R = QAQT (30) 

Al O\ 

QQT = I, A= 

i 

. . . ) (31) 
0 An, 

we can find the corresponding y1 time constants ri of the 
weight relaxation process as 

1 pLxi -=x 1, ,rl = ~ 
2pA; ’ 

lIi<n. (324 

As the weights relax toward the Wiener solution, the mean 
square error, a quadratic function of the weights, under- 
goes a geometric progression toward ~min. The “learning 
curve” is a plot of mse versus number of adaptation cycles. 
The natural modes of the learning curve have time con- 
stants half as large as the corresponding time constants of 
the weights [2]-[4]. Accordingly, the mse (associated with 
the error E[ Wj] - W*) learning curve time constants are 

1 
7i,,, = - 4/L& ’ 

14iSn. (32b) 

After convergence takes place, there remains noise in the 
weights due to the noise in the estimation (25) of the 
gradient. An approximate value of the covariance of the 
weight noise, valid for small p, was derived in [4, app. D]: 

E[YY”] =p.‘&in*I. (33) 
The noise in the weights will cause an excess error in the 
system output (in addition to the Wiener error): 

E excess = E[(FTX,)“] 

= E [ tr( F$F$‘x,x:)] . (34) 
Assuming, as has been done before [2]-[4], that 5 and Xj 
are independent, expression (33) can be substituted into 
(34) to obtain 

E exceSS = pL,nE[$] = purl,. (35) 
Therefore, we can compute the m isadjustment, defined as a 
ratio between the excess mean square and the m inimum 
mean square error: 

M= Ir,tr(R). (36) 
The adaptation constant p should be kept low in order to 
keep the m isadjustment low. However, low p is associated 
with slow adaptation in accordance with (32). 

Expressions (27)-(36) illustrate the potential vulnerabil- 
ity of the steepest descent algorithm. The speed of conver- 
gence will depend on the choice of initial conditions. In the 
worst case, the convergence will be dominated by the 
lowest eigenvalue 

Ami, = m in(h,; . .,A,). (37) 
This implies that even if we choose the maximal value 
allowable for the adaptation constant p (due to the stability 
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constraint (27)) the slowest time  constant for the weights 
would be  

tr(W  
r 2  2h,, . (38) 

For the class of problems for which there exists a  great 
spread of eigenvalues of the autocorrelation matrix R, this 
number  will be  high resulting in long convergence times (at 
least in the worst case). 

IV. GRADIENTSEARCHBYTHEORTHOGONALIZED 
LMS ALGORITHM 

In order to eliminate a  potential deficiency of the 
W idrow-Hoff algorithm due  to eigenvalue spread of the 
input autocorrelation matrix, we can prefilter the input 
signal in such a  way that it will become orthogonal. Such a  
process would require perfect knowledge of the autocorre- 
lation matrix R. Hence such an  algorithm is not able to be  
implemented practically, al though it is important from a  
theoretical point of view. 

The  block diagram of the idealized orthogonal LMS 
algorithm used in a  mode ling process is presented in the 
F ig. 4. In F ig. 4(a), each input signal vector to the adaptive 
process is preprocessed by the orthogonalization matrix 

R-‘/2 = Q  

\ 

QT = ,A-“‘QT. 

(39) 

Refer next to F ig. 4(b). Clearly this system is equivalent to 
that of F ig. 4(a) because the matrices R’/2 and R-1/2 
incorporated into the unknown plant cancel each other. 
Denoting 

Xt 4  R-I/2X. 
J I’ (404 

Wt  6  R’/2W. 
J J’ W V  

and 
W t* 4  R’/2W* 3 (41) 

we can transform the system of F ig. 4(b) to that of F ig. 
4(c). The  adaptive process of F ig. 4(c) is, in turn, equiva- 
lent to the conventional LMS adaptive process of F ig. 1  
and  2  with input signal XJ? guaranteed to be  orthogonal- 
ized. The  plant impulse response is now mod ified to be  
W ’f*. From the systems equivalences of F ig. 4, we conclude 
that the orthogonalized LMS algorithm of F ig. 4(a) will 
perform exactly as the conventional steepest descent algo- 
rithm of W idrow and  Hoff fed by an  input signal with 
autocorrelation matrix 

Rt A +-,?(X,f)‘] = R’/2E[XjX;]R-‘/2 = I. 

(42) 
Therefore we can, evaluate the performance of the ideal- 
ized orthogonalized LMS algorithm, using the well-known 
expressions (25)-(36). 

The  adaptation rule of the orthogonalized algorithm will 
be  

Ff$ = I+$+ + ~$‘c~R-“~X, = Ff$t + 2phjX,! (43) 

According to (27), for a  choice of adaptation constant in 
the range 

1  1  o<pt<---=- 
tr(Rt) n’ (44) 

the algorithm will converge to the optimal (Wiener) solu- 
tion W t*. Since all the eigenvalues of Rt are equal  to unity 
there will be  only one  mode  of convergence and  only one  
time  constant. According to (32a) and  (32b), 

1  q-E- 
w 
1 7  =- mse 4$  . 

These time  constants will hold for an  arbitrary choice of 
initial conditions. Therefore an  idealized algorithm would 
indeed solve the problem of worst case slow convergence of 
the conventional steepest descent algorithm. 

Next we will analyze the orthogonalized LMS algorithm 
to determine how close it brings us to the performance of 
the exact least mean  square algorithm described in Section 
II. 

According to (44) and  (45a) the m inimal possible time  
constant for the weights which is consistent with algorithm 
stability is 

n  rmin=-. 2  
Completion of the convergence process will require several 
time  constants or, in other words, a  number  of input 
samples which will be  of the order of magn itude of n. This 
is consistent with the fact that the exact least mean  square 
algorithm receives at least n  samples in order to compute 
an  estimation of n  weights of the unknown plant. 

After convergence takes place, the weights of the mode l 
remain noisy (due to the noise in the instantaneous estima- 
tion of the gradient). We  will denote by yt the weight 
error vector 

yt = W jt - W t* = WJt - R’/2W*a (47) 
According to (33) the weight error covariance matrix is 

E[ Fy(g)‘] = p t. Etin. I. 
The  noise in the adaptive weights will cause m&adjustment 
which can be  found from (36) as the ratio of excess mse to 
m inimum mse: 

/ excess mean  \ 
= pftr(Rt) = pt. n. (49) 

Substituting (45b) into (49) yields 

M ’=gL 
mse 
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Fig. 4. Orthogonal ized LMS algorithm appl ied to plant identification. (a) Adaptat ion with orthogonal ized inputs. (b) 
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The  question is, how does this compare with the m isadjust- 
ment M  = n/N of the exact least mean  squares algorithm 
found in Section II. Since we wish to compare the m isad- 
justment of an  exact least squares process that adapts with 
a  finite equally weighted data sample to the orthogonalized 
LMS algorithm which weights its input data exponentially, 
we are to some extent comparing “apples with oranges.” 
However, at least from a  heuristic point of view, both (23) 
and  (50) are equivalent. 

The  orthogonalized LMS algorithm exponentially weights 
its input data over time  as it establishes its weight values. 
An exponential averaging window moves with time. The  
settling time  of the adaptive process is of the order of four 
time  constants of the mse learning curve. At any moment,  
the weights are determined by adaptation taken place over 
the last four time  constants worth of data. Thus, in a  
steady flow situation, the training data “consumed” at any 
time  by the orthogonalized LMS algorithm is essentially 
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Fig. 5. Model ing an  unknown time-variable system. 

the most recent 47,se samples. The  m&adjustment of the 
orthogonalized LMS can therefore be  expressed as 

&+.+ (number of weights) 
mse (number of independent training samples) . 

(51) 
It is clear from this expression that the orthogonalized 
LMS algorithm uses its training data about as efficiently as 
an  exact least squares process. 

V. ORTHOGONALIZED LMS VERSUS CONVENTIONAL 
LMS: NONSTATIONARY INPUTS 

F iltering nonstationary signals is a  ma jor area of appli- 
cation for adaptive systems. When  the statistical character 
of an  input signal changes gradually, randomly, and  unpre- 
dictably, a  filtering system that can automatically optimize 
its input-output response in accord with the requirements 
of the input signal could yield superior performance rela- 
tive to that of a  fixed, nonadapt ive system. The  perfor- 
mance of the conventional, steepest descent LMS algorithm 
is compared here with orthogonalized steepest descent LMS 
(which, as demonstrated in the previous section, possesses 
certain optimajity qualities), when both algorithms are 
used to adapt transversal filters with nonstationary inputs. 
The  nonstationary situations to be  studied are highly sim- 
plified, but they retain the essence of the problem that is 
common to more complicated and  realistic situations. 

The  example considered here involves mode ling or iden- 
tifying an  unknown time-variable plant, assumed to be  
transversal, ?f length IZ, whose weights (impulse response 
values) undergo independent stationary ergodic first-order 
Markov processes, as indicated in F ig. 5. The  plant input 
signal xj is assumed to be  stationary, ergodic, and, in 
geaeral, colored. Additive plant output noise, assumed to 
be  stationary, of mean  zero, and  of variance tti, prevents 
a  perfect match between the unknown system and  the 
adaptive system. The  m inimum mse is, therefore, tmin, 
achieved w$enever the n  weights of the adaptive filter W j 

match the corresponding n  weights of the unknown plant. 
The  latter are at every instant the optimal values for the 
corresponding weights of the adaptive filter and  are desig- 
nated W ,*, the subscript j indicating that the unknown 
“target” to be  tracked is time  variable. It is tempting to 
call the target W j* a time  variable W iener solution, but this 
would be  improper since the nonstationary nature of the 
problem is beyond classical W iener theory. 

According to the scheme of F ig. 5, m inimizing mse 
causes the adaptive weight vector W j to attempt to best 
match the unknown y* on  a  continual basis. The  R 
matrix, dependent  only on  the statistjcs of xj, is constant 
even as W j* varies. The  desired response of the adaptive 
filter dj is nonstationary, containing the output of a  time-  
variable system. The  m inimum mse trnin is constant. Thus 
the mse function, a  quadratic bowl, varies in position while 
its eigenvalues, eigenvectors, and  tmi, remain constant. The  
adaptive process has the task of tracking the bottom of a  
randomly moving bowl in the presence of gradient noise. 

In order to study this form of nonstationary adaptation 
both analytically and  by computer simulation, a  mode l 
comprising an  ensemble of nonstationary adaptive 
processes has been  defined and  constructed as illustrated in 
F ig. 6. The  ensemble of unknown filters to be  mode led are 
all identical copies of the unknown plant and  have the 
same time-variable weight vector y.*. Each ensemble 
member  has its own independent stationary input signal 
going to both the unknown system and  the corresponding 
adaptive system. The  effect of output noise in the unknown 
systems is obtained by the addition of independent noise of 
variance cti. All of the adaptive filters are assumed to 
start with the same initial weight vector W ,, each develops 
its own weight vector over time  in attempting to pursue the 
Markovian target H$*. 

The  class of problems defined above was analyzed in 
[26], using the conventional steepest descent algorithm as 
an  adaptation rule. Presently our aim will be  to mod ify this 
line of reasoning in order to evaluate the nonstationary 
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Fig. 6. Ensemble of nonstationary adaptive processes. 

performance of the orthogonalized LMS algorithm. We use 
once more the ,equivalent representations of Fig. 4. Clearly 
the adaptive model will attempt to track the moving target 

W,t* ii R’/2Wj*. 
J (54 

For a given adaptive filter, the weight vector tracking 
error at thejth instant is (y.t - Tt*). This error is due to 
both the effects of gradient noise and weight vector lag, 
and may be expressed, as 

(weight vector error) J 

= (I$$+ - lq+*) 

= (ly+ - E[ Fq’]) + (E[ Fy’] - T+*). 
WW’ 

weight vector weight vector 
noise lag 

(53) 
The expectations are averages over the ensemble. Time 
averages are impossible to use with nonstationary statistics. 

The components of error are identified in (53). Any 
difference between the ensemble mean of the adaptive 
weight vectors and the target value Wj+* is due to lag in the 
adaptive process, i.e., due to the adapting weight vectors 
lagging behind the moving target F#$+*. The deviation of 
the individual adaptive weight vectors about their ensemble 
mean is due to gradient noise. 

Weight vector error causes an excess mse. The ensemble 
average excess mse at thejth instant is 

= E[(U;+ - T+*)TR+(U;+ - FF$+*)]. 

J 

(544 

The average excess mse at time j is 

Eexcess = ( av,,,,s) 

=(E[(y+ - Ff$+*)TR+(w,+ - ?+*)I). 

(54b) 
Using (53), this can be expanded as follows: 

( avg;zess) 

=(E[(?+ - E[T+])TR+(Fy+ - E[T+])] 

+E[(E[et;+] - T+*jTR+(E[T+] - Ff$+*j] 

++$+ - E[U;+]jTR+(E[Wj+] - wit*)]). 

(55) 
Expanding the last term of (55) and simplifying since PVJT 
is constant over the ensemble, 

( [ 2E WjtTR+E [ Wj+] - WjtTR+H$+* 

-E[T+]TR+E[y+] +E[W,+]‘R+WJ+* 
I> 

=(2E[y+]TR+E[W,+] -E[T+]=R+++] 

-E[T+]*R+T+* + E[T+]TR+y.+*) 

(56) 

=(E[(T+ - E[W,+]j?X+(W,+ - E[y+])] 

+ E[(E[W,I] - ~+*jTR+(E[~+] - Ff$+*)]). 

(57) 
The average excess mse is thus a sum of components due to 
both gradient noise and lag: 

avg excess 
mse due to lag 

=(E[(E[Fq+] -f-y+ *)‘R+( E [ Ff$+] - ?+*)I) 

=(E[(E[y+] - y+*)‘(E[U;t] - Fy+*)]): 

(58) 

= E (w,+- E[y.+ 
[ ])k+( y+ - E[ T+])] 

= E[(y+ - E[Ct;+]jT(Ct;+ - E[y+])]. 

(59) 
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Using (48) can can evaluate the expression (59): ’ 

4  = p+n[,i, = *. (60) 

The  next step is an  evaluation of (58), the excess mse due  
to lag. Statistical knowledge of (E[ W j+] - W ,+*) will be  
required. In finding lag effects, we may eliminate gradient 
noise from consideration so that E[ W j+ ] = y+. Knowl- 
edge  of ( y+ - W j+*) will be  sufficient. 

W ithout gradient noise, orthogonalized LMS is repre- 
sented by (43) as 

F& = T+ + 2p+E [ E/X/] 

= T+ + 2p+E[(XfF5+* -(X/)%j+)Xj 

= (1 - 2p+)IJ$+ + 2p+FJ$+*. 

Substitution of (52) into (61) yields 
W& -(l - 2p+)Wj+ = 2p+W,+* = 2~+iRl’~W~*. t 

uncorrelated samples to the components of A(z) is 

T(z) = ( 1  -izpl)( 1  e ;l’;;)z-l )> (66) 
where a  is the geometric ratio of the nonstationarity. The  
variance of each of the independent components of A(z) is 
equal  to a2  mu ltiplied by S, b  sum of the squares of the 
impulses of the impulse response corresponding to the 
transfer function T(z) given by (66). Transforming to the 
time  doma in and  summing squares yields 

i 1 ii 21-a -- p  40  4P 
- 

s* =  a-1+2/& 1+u+1-p 1  -a + 2ya 1  . 

The  covariance of A(z) may be  expressed as 

61) 
cov [A(z)] = Stu21. (68) 

Hence, the covariance of ( W j+ - I#$+*) may be  found as 

62) 
cov[(y.+ - y+*)] = R”2(~~~[A(z)])R1’2 = Sp2R. 

. (69) 
The  random vector q.* is the driving function for tms 
vector difference equation. Notice that there is no  cross- 
coupling from any one  coordinate to any other. Further- 
more, all components of W j* have been  assumed to be  
stationary, ergodic, independent of each other, first-order 
Markov, and  they have all been  assumed to have the same 
variances and  the same autocorrelation functions. There- 
fore, (62) may be  treated as an  array of 12  independent 
first-order linear difference equations. 

Substituting (69) into (58) yields 
avg excess 

mse due  to lag = S,a’tr(R). (70) 

We  will next derive an  expression for the covariance of 
( WJt - yj+*) resulting from the random driving function 
W j*. Takmg z transforms of both sides of (62) yields 

In order to use (70), we have to evaluate the value of the 
constant S, in expression (67). In practice it m ight be  
difficult, but in certain special cases of interest this task 
m ight be  simplified. If the adaptive process is slow relative 
to the changes in the plant, we can assume p+ = 0. Then  

1  s, = ___  
1- u2’ (71) 

A more common case occurs when the adaptive process is 
rapid relative to the time  variation of the plant. As such, 

1  - a  < /J+ K 1, (72) 
and  therefore 

S&2. 
4lJ+ 

(73) 

Expression (73) can be  used as an  excellent approxima- 
tion of S,. Substitution of (73) into (70) yields 

(67) 

zW+(z) -(l - 2p)W+(z) = ~/.LR”~W*(Z) (63) 

or, equivalently, 

w+(z) = 2pz-1 
1  -(l - 2p)z-1 1 R”2 W*( z) (64) 

and 

w+(z) - w+*(z) = 1  -;l-:;;)z-l 1 R1’2W*(~) 

4 R1’2A(~). (65) 
The  vector A(z), conveniently defined in (65), will be  used 
below. 

The  random vector y* is assumed to be  first-order 
Markov. A mode l for the generat ion of WJ* is shown in 
F ig. 5. Each of its components is generated by passing 
uncorrelated (“white”) samples of variance a2  through a  
one-pole discrete filter of transfer function l/(1 - a~-‘). 
This transfer function is in cascade with the above de- 
scribed transfer function. Thus, the transfer function from 

‘Strictly speaking, in the nonstat ionary case, E,,,,, includes the power  of 
the plant noise and  the additional error power  due  to lag. For the sake of 
simplicity, we assume here that the adapt ive process tracks well. Fluctua- 
tions in the plant parameters and  error due  to lag is assumed to be  
negligible relative to the tmin of stationary plant. 

avg excess 
mse due  to lag =$tr(R)=$tr(R). (74) 

Substitution of (60) and  (74) into (57) yields 
avg excess 

mse = p+nEti,, + -$ tr (R) 

4 = < + $  tr(R). (75) 

Normalizing with respect to tmin, we can compute the net 
m isadjustment due  to weight noise and  weight lag as 

M,t,, = E + g tr(R) 
flllll 
U2 

= p+n + ___ 

4P+Emin 

tr(R). 
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The optimal choice of p+ that m inimizes ML, is obtained 
by differentiating (76) with respect to pt, and setting the 
derivative to zero. The result is that the adaptive process is 
optimized when the component of M&,, due to the noise in 
the gradient is equal to the component of MA, due to the 
lag: 

U2 

p+*n = 4p*(,- 
tr(R). 

Hence the optimal value of p+ is6 

(77) 

pt* = u’tr(R) 
4nEmin ’ (78) 

Substitution of (78) into (76) yields the m inimal m isadjust- 
ment 

M& = J 
u’ntr(R) 

twin ’ 
(7% 

With a priori knowledge of the input signal power (to get 
tr (R)), and with knowledge of ,z&, and u2, these formulas 
could be used to set p and predict m isadjustment. Without 
such knowledge, one could slew the value of p seeking the 
lowest system mse. 

These results apply to orthogonalized LMS. An analo- 
gous problem was of considered in [26], where the perfor- 
mance of stochastic gradient LMS algorithm of Widrow 
and Hoff in a nonstationary environment was evaluated. 
Using as a model the same configuration presented in Figs. 
5 and 6, the excess mean square error was computed. The 
approach used was similar to the one described above, i.e., 
the system error was divided into two uncorrelated parts: 
error due to the gradient noise and error due to the lag in 
the adaptation process. The overall m isadjustment M ,,, 
equals the sum of m isadjustments caused 
these errors: 

by each one of 

A4 1 Flu2 
S”lll = C-(R) +;r m m  

Optimizing the choice of p results in the 
when the two right-hand terms are equal, 

p*tr(R) =-$g. 
m m  

(80) 

m inimum MS,, 

(81) 

Hence for the steepest descent LMS algorithm on optimal 
choice of adaptation constant would be 

J 2 
p = 

4tmzyr (R) 
n 

=- 

tr(R)Pt*. (82) 

In other words, on optimal value p* for the adaptation 
constant of the steepest descent LMS algorithm is equal to 
the optimal value of the adaptation constant pt* for the 

6When optimizing pt is accord with the above procedure, one must 
keep this parameter within the stable range (44). Formula (78) applies as 
long as IL+* is in the stable ranae. Otherwise, ut is set to its maximal stable 
value. ?he minimal misadjustment is determmed either by (79), or by (76) 
when pt is limited by stability considerations. Low plant noise would be 
the cause of pt* exceeding the stable limit. 

orthogonalized algorithm normalized by the factor of input 
signal power. 

For the steepest descent LMS algorithm, the m isadjust- 
ment will be m inimal for p = p*. Using (82) and (80) we 
have 

Ktn = d 
nu2tr(R) 

E& . (83) 

Comparing (83) with (79), we note that 

iv;, = fi4pm. (84) 
The optimized m isadjustment of the orthogonalized LMS 
algorithm turns out to be equal to the optimized m isadjust- 
ment of the original Widrow-Hoff steepest descent LMS 
algorithm, regardless of the eigenvalue spread. The im- 
portant conclusion is that, for the assumed form of nonsta- 
tionary input, the two algorithms give identical mean square 
error performance although the adaptive steps of the two 
algorithms generally differ in detail. 

VI. CONCLUSION 

Using an exact least squares algorithm to determine the 
n weights of an adaptive filter from N independent samples 
of data, we have shown the m isadjustment to be A4 = n/N. 

We have devised an ideal form of the steady flow LMS 
algorithm called orthogonalized LMS. To implement this 
algorithm, one would need perfect knowledge of the input 
covariance matrix R. Since this would not generally be 
known, the orthogonalized LMS algorithm is primarily of 
theoretical interest. We have shown that with a stationary 
input, this algorithm develops a m isadjustment equal to 
M+ = n/47,,,. Comparing this result with the m isadjust- 
ment formula for exact least squares, one sees great similar- 
ity. The amounts of data at any time being used to de- 
termine the weights is of the order of four time constants 
of the learning curve, the “settling time” of the adaptive 
process. One concludes that for a given speed of adapfa- 
tion, the m isadjustment of the orthogonalized LMS algo- 
rithm is about as low as can be obtained by any algorithm, 
and that this algorithm uses its input data about as effi- 
ciently as an exact least squares process. 

Next, we have analyzed the behavior of the orthogonal- 
ized LMS algorithm in a nonstationary plant identification 
application. Comparing the results of this study with those 
obtained by Widrow and McCool for the same application 
but using the conventional steepest descent LMS algo- 
rithm, it was determined that the mean square error perfor- 
mance of the conventional LMS algorithm is on the aver- 
age identical to that of the orthogonalized LMS algorithm, 
regardless of eigenvalue spread. For the nonstationary 
problem considered, we conclude that the conventional 
LMS algorithm performs as efficiently as exact least 
squares. 

It is not always true that the performance of the LMS 
algorithm with nonstationary inputs will be independent of 
the eigenvalue spread. As a matter of fact, a form of 
nonstationarity studied by Mac&i and Eweda [27] was 
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such that the LMS algorithm did show sensitivity to eigen- P51 

value spread and  the performance of an  orthogonalizing 
algorithm for this case could have been  better than that of 
conventional LMS. However, from the analysis conducted [I61 
above, one  can conclude that the steepest descent LMS 
algorithm of W idrow and  Hoff, devised in 1960, not only is [171 
the simplest algorithm but is a  highly efficient one  for use 
with a  variety of nonstationary inputs. [181 
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