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ABSTRACT

The LMS algorithm invented by Widrow and Hoff in
1959 is the simplest, most robust, and one of the most
widely used algorithms for adaptive filtering. Unfortu-
nately, its convergence rate is highly dependent upon the
conditioning of the autocorrelation matrix of its inputs:
the higher the input eigenvalue spread, the slower the
convergence of the adaptive weights.

This problem can be overcome by preprocessing the
inputs to the LMS filter with a fixed data-independent
transformation that, at least partially, decorrelates the
inputs. Typically, the preprocessing consists of a DFT or
a DCT transformation followed by a power normalization
stage. The resulting algorithms are called DFT-LMS and
DCT-LMS. This technique is to be contrasted with more
traditional approaches such as recursive least squares al-
gorithms, where an estimate of the inverse input autocor-
relation matrix is used to improve the filter convergence
speed.

After placing DFT-LMS and DCT-LMS into context,
we propose three different approaches to explain the al-
gorithms both intuitively and analytically. We discuss
the convergence speed improvement brought by these al-
gorithms over conventional LMS, and we make a short
analysis of their computational cost.

INTRODUCTION

It is well know from the theory of LMS (Widrow, 1985)
that the mean square error of an adaptive filter trained
with the LMS algorithm decreases over time as a sum of
exponentials whose time constants are inversely propor-
tional to the eigenvalues of the autocorrelation matrix of
the inputs to the filter. This means that small eigenval-
ues create slow convergence modes in the MSE function.
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Large eigenvalues, on the other hand, put a limit on the
maximum learning rate that can be chosen without en-
countering stability problems (Widrow,1985). It results
from these two counteracting factors that the best con-
vergence properties are obtained when all the eigenvalues
are equal, that is when the input autocorrelation matrix
is proportional to the identity matrix. In this case, the in-
puts are perfectly uncorrelated and have equal power; in
other words, they are samples of a white noise process. As
the eigenvalue spread of the input autocorrelation matrix
increases, the convergence speed of LMS deteriorates.

DFT-LMS and DCT-LMS offer a solution to this prob-
lem. By preprocessing the input data with a well-chosen
but fixed transformation that does not depend on the in-
puts, and with a simple power normalization stage, they
cause the input eigenvalues of the LMS filter to cluster
around one, and speed up the convergence of the adap-
tive weights.

Recursive least squares algorithms also decorrelate the
inputs by preprocessing them, but they use to that effect
an estimate of the inverse autocorrelation matrix, which
thus depends on the actual inputs.

The performance of the algorithms based on data-
independent transformations clearly depends on the or-
thogonalizing capabilities of the transform used. No gen-
eral proof exists that demonstrates the superiority of one
transform over the others. DFT-LMS first introduced by
Narayan (1983) is the simplest algorithm of this family,
both because of the exponential nature of the DFT and
because scientists have developed a strong intuition for
the Fourier transform. It is our experience though that in
most practical situations DCT-LMS performs much bet-
ter than DFT-LMS. In addition, it has the advantage over
DFT-LMS to be real valued.

In this paper, we first compare the general philosophies
of DFT/DCT-LMS and recursive least squares (RLS) al-
gorithms. We then explain, through three different ap-
proaches, the mechanisms of DFT-LMS and DCT-LMS.
We present new results on convergence speed, and con-
clude with a short analysis of computational cost.
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DFT/DCT-LMS VS. RLS

By iteratively calculating the inverse autocorrelation
matrix of the input data and using it to compute the cur-
rent filter weights, RLS implements an exact least squares
solution (Franklin, 1990; Haykin, 1991). The major ad-
vantages of RLS over LMS are its relatively low sensitivity
to input eigenvalue spread, its fast convergence, and the
fact that, at least for stationary inputs, the quality of its
steady-state solution keeps on improving over time. On
the other hand, RLS suffers from poor tracking capabili-
ties in nonstationary environments (Bershad, 1989), from
high computational cost, and from lack of robustness un-
der certain input conditions.

The computational cost and robustness issues have
been addressed by researchers in developing other exact
least squares algorithms, the most famous of them being
the recursive lattice filter algorithms. Lattice filters typ-
ically require less computations per iteration than RLS,
but even their most robust forms can present stability
problems (North, 1993). In addition, they are long and
complicated to implement. '

LMS is intrinsically slow because it does not decor-
relate its inputs prior to adaptive filtering, but prepro-
cessing the inputs with an estimate of the inverse input
autocorrelation matrix in the fashion of RLS leads to the
problems cited above. The solution we propose in the
next section consists of preprocessing the inputs to the
LMS filter with a fixed transformation that does not de-
pend on the actual input data. The decorrelation will
only be approximative, but the computational cost will
remain very low, and the robustness and tracking ability
of LMS will not be affected.

DFT-LMS AND DCT-LMS

The DFT-LMS and DCT-LMS algorithms are com-
posed of three simple stages (see Fig. 1). First, the tap-
delayed inputs are preprocessed by a discrete Fourier or
cosine transform. The transformed signals are then nor-
malized by the square root of their power. The resulting
equal power signals are inputted to an adaptive linear
combiner whose weights are adjusted using the LMS al-
gorithm. With these two algorithms, the orthogonalizing
step is data independent; only the power normalization
step is data dependent (i.e. the power levels used to nor-
malize the signals are estimated from the actual data).
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Figure 1: DFT-LMS and DCT-LMS block diagram.

A filtering approach

The n-point discrete Fourier/cosine transform can
be seen as a n x n linear transformation from in-
puts X = (Zk,Zk—1,...,Tk—nt1)’ to outputs up =
(u£(0)), ug(1), ..., up(n — 1)), where ux(i) is the i** out-
put of the DFT/DCT at time k (see Fig. 1). Each output
ug(i) can be expressed as a weighted sum of the inputs
Tk-i, for | = 0..n — 1, that is as the convolution of z;
with some discrete impulse response h;. In the case of
the DFT,

hi(l) = \/%-e"zﬁ‘—'

The associated transfer function,

11— e-iwn
ne= ;e

represents a bandpass filter of central frequency 27i/n.
The DFT can thus be seen as a bank of bandpass filters
whose central frequencies span the interval [0 27]. Fig-
ure 2 shows the magnitude of the transfer functions H;(w)
of an 8 x 8 DFT.

Vi=0..n-1
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Figure 2: 8 x 8 DFT: magnitudes of the transfer functions of a bank of bandpass filters.
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At each time k, the input signal x; is decomposed into
n signals lying in different frequency bins. If the bandpass
filters were perfect, the outputs of the DFT would be per-
fectly uncorrelated, but due to the presence of side lobes
(see Fig.2) there is some leakage from each frequency bin
to the others, and thus some correlation between the out-
put signals.

In the case of the DCT, the it®
is given by

hi(l) = \/—g K; cos(i(LFT}-/-gE)

where K; =1/v/2fori=0and 1fori=1..n— 1. The
corresponding transfer functions are given by

Hi(w) = \/—'K, cos(=— nr) (1= e )1 — (=1)e9vm) ‘

1 — 2cos(*X)e-iw 4 e=2w

impulse response h;(l)

Vi=0..n-1

They still represent a bank of bandpass filters but with
different central frequencies, different main lobe and side
lobes, and different leakage properties.

A geometrical approach

The DFT-LMS and DCT-LMS algorithms can also be
explained and illustrated geometrically. The DFT and
DCT matrices defined by

fios
P ke

for k,1 = 0..n — 1, are unitary matrices (i.e. their rows
are orthogonal to one another and have euclidian norm
one). Unitary transformations perform only rotations and
symmetries, they do not modify the shape of the object
they transform.

The mean square error of LMS is a quadratic func-
tion of the weights (Widrow, 1985). Writing the MSE
as a function of the weights and fixing it to some con-
stant value, we get an implicit quadratic function of
the weights that represents a hyperellipsoid in the n-
dimensional weight space. A unitary transformation of
the inputs rotates the hyperellipsoid and brings it into
approximate alignment with the coordinate axes. The
slight imperfection in alignment is primarily due to leak-
age in the transform, DCT or DFT. The idea is illustrated
for a simple 2-weight case in Fig. 3. Figure 3(a) shows

F(k, ) =

A+ 1/2)1r

C(k,I) —_),

the original MSE ellipse, Fig. 3(b) shows it after transfor-
mation by a 2 x 2 DCT matrix. The shape of the ellipse
is unchanged and so are the eigenvalues of the autocorre- -
lation matrix. .

The power normalization stage (cf. Fig. 1) can be
viewed geometrically as a transformation that, while pre-
serving the elliptical nature of the MSE, forces it to cross
all the coordinate axes at the same distance from the cen-
ter. This operation is not unitary and it does modify the
eigenvalue spread. It almost always improves it. The bet-
ter the alignment of the hyperellipsoid with the coordi-
nate axes, the more efficient the power normalization will
be (a hyperellipsoid perfectly aligned being transformed
in a hypersphere). Figure 3 shows the result of power
normalization for our example. The new ellipse is more
round-shaped and has lower eigenvalue spread. This is
very typical.

Figure 3: MSE hyperellipsoid (a) before transformation,
(b) after DCT, (C) after power normalization.

An analytical approach

In order to find precise information on how well a given
transform decorrelates certain classes of input signals, one
must set the problem in a more mathematical framework.
Transforming a signal X by a matrix T (the DFT or
the DCT matrix), transforms its autocorrelation matrix
R = E(XX') into B = E(TXX'T!) = TRT'. The
power of TX can be found on the main diagonal of B.
Power normalizing TX transforms its elements TX; into
TX;/+/Power of (TX;), having the autocorrelation ma-
trix

S = (diagB)~ /2 B (diagB)~!/2.
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If T decorrelated X exactly, B would be diagonal and
S would be the identity matrix I and would have all its
eigenvalues equal to one; but since the DFT and the DCT
are not perfect decorrelators, this does not work out ex-
actly. Some theory has been developed in the past about
the decorrelating ability of the DFT and the DCT (see for
example Grenander, 1984; Gray, 1977; Rao, 1990) but the
results presented in the literature are in general too weak
to allow us to infer anything about the magnitude of the
individual eigenvalues of S, which is our main interest.
For example, it has been proven that the autocorrelation
matrix B obtained after the DFT or the DCT “asymptot-
ically converges” to a diagonal matrix: “asymptotically”
meaning as n, the size of B, tends to infinity, and “con-
verges” being understood in a weak norm sense!. From
this result, we can deduce that S will asymptotically con-
verge to identity as n tends to infinity. However, we can
not conclude anything about the possible convergence of
the individual eigenvalues of S to one, everything depends
on how and how fast S converges to I. To obtain stronger
results, further assumptions are necessary, for example
regarding the class of input signals to be considered.

Eigenvalues and eigenvalue spread
for Markov-1 inputs

First order Markov signals are a very general, practical,
and yet simple class of signals. They result from white
noise passing through a single pole lowpass filter. Such
a filter has an impulse response that decreases geometri-
cally with a rate p given by the filter pole. A Markov-1
input signal X; = (zk,Zk-1,..., Tk—n+1)" of parameter
p € [0 1] has an autocorrelation matrix R equal to

1 p p2 pn— 1
p 1 p P2
R= p2 4 1
pn;l pn.—2 1

For n large (theoretically for n tending to infinity), the
minimum and maximum eigenvalues of an autocorrelation
matrix R are given by the minimum and maximum of the
power spectrum of the signal that generated this autocor-
relation (Grenander, 1984; Gray, 1977). This result is a

1Two matrices converge to one another in a weak norm sense
when their weak norms converge to one another. The weak norm
of a matrix is defined as the square root of the arithmetic average
of its eigenvalues.
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direct consequence of the fact that R is Toeplitz. It can
easily be checked that in our case the power spectrum of
zy is given by

+oo . 1
P(w) = E ple—le _

= 1 — 2pcos(w) + p2
Its maximum and minimum are respectively 1/(1 — p)?
and 1/(1+ p)?. The eigenvalue spread of R thus tends to
Eigenvalue spread before transformation = (—:—+—§)2
This eigenvalue spread can be extremely large for highly
correlated signals (p close to 1).

The autocorrelation S of the signals obtained after
transformation by the DFT or the DCT and after power
normalization is not Toeplitz anymore, and the previous
theory can not be applied. The analysis is further compli-
cated by the fact that only asymptotically do the eigen-
values stabilize to fixed magnitudes independent of n, and
that power normalization is a nonlinear operation. Suc-
cessive matrix manipulations and passages to the limit
allowed us to prove the following asymptotic results (see
Beaufays, 1993, 1994) for more details):

Eigenvalue spread after DFT = -i—-'-—g,
Eigenvalue spread after DCT = 1+ p.

Note that with the DCT, the asymptotic eigenvalue
spread is never higher than 2!

As a numerical example, let the correlation p be equal
to 0.95. The eigenvalue spread before transformation is
1521, after the DFT 39, after the DCT 1.95. In this case,
using the DCT-LMS instead of LMS would speed up the
filter weight convergence by a factor roughly equal to 750.

These results confirm, for a simple but very practical
class of signals, the high quality of the DCT as a signal
decorrelator.

Computational cost of DFT-LMS

and DCT-LMS

In addition to their fast convergence and robustness,
DFT-LMS and DCT-LMS have the advantage of a very
low computational cost. The inputs z;, Tho1y ooy Thenl
being delayed samples of the same signal, the DFT-DCT
can be computed in O(n) operations. For the DFT,

n-1 )
up(i) = E Iz

=0
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n
j Ax3l ;Axin
= 3k+§ el 5= Tr1—e 5y
=1

= ej’*iu;._,(i) + 2 — ZTp_p.
The ux(i)’s can thus be found by an O(n) recursion from
the ux_1()’s. This type of DFT is sometimes called slid-

ing DFT. A similar O(n) recursion can be derived with
more algebra for the DCT:

CT(s) = uDCT(:)cos( ) -

ufsr(i)sin(ﬂ) + J:coa(%:.-)(zk - (—1)‘:;,,_"),

DST(l) — uDST(t)COS( )+
CT(:)sm( )+ \/:sm(—)(:ck - (-1 :ck_.,)

uP ©T (i) is the i** output of the DCT, uPS7 (i) is the i*h
output of a DST (discrete sine transform) defined exactly
like the DCT but replacing “cos” by “sin” (interlacing
two recursions is necessary and comes basically from the
fact that cos(a + b) = cos(a)cos(b) — sin(a)sin(b)).

The power levels of the u(i)’s can also be computed
by a simple O(n) recursion:

Py (i) = BPr-1(3) + uj (i),

where Py (i) = (power of ux(i))/(1 — ), P-,(i) is initial-
ized to zero, and g € [0 1] is a forgetting factor.

Finally, the last step, the LMS adaptation of the vari-
able weights, is O(n). The overall algorithm is thus O(n).

CONCLUSION

For the most part, the DCT-LMS algorithm is superior
to the DFT-LMS algorithm. Both are robust algorithms,
containing three robust steps: transformation, power nor-
malization (like automatic gain control in a radio or TV),
and LMS adaptive filtering. These algorithms are easy
to program and to understand. They use a minimum of
computation, only slightly more than LMS alone. They
work almost as well as RLS but don’t have robustness
problems. The lattice forms of RLS are more robust than
RLS, but they are much more difficult to program and to
understand. All in all, the DFT-LMS and DCT-LMS al-
gorithms should find increased use in practical real-time
applications.
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